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Welcome

Welcome to the gsSurv Technical Manual by Keaven M. Anderson. You
can view the HTML version at https://keaven.github.io/gsSurv/. Thanks to
Nan Xiao for help with document production.

Source code and documentation for survival analysis using gsSurv() and
associated routines.

Overview

This was developed with the literate programming (https://en.wikipedia.org/
wiki/Literate_programming) method proposed by Donald Knuth to produce
self-documenting code. Currently it is out of date with the associated code
in the gsDesign R package. Since some the algorithm used for sample size is
an extension of the Lachin and Foulkes method, this also serves as documen-
tation of extension of the methods. There is a possible objective of publishing
at arXiv.org since the methodology has not otherwise been fully documented.

Ongoing and planned initiatives

• Created repository at https://github.com/keaven/gsSurv (2023/02/05)
• See summary of updates on the gsSurv2.pdf document generated
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Preface

We consider a 2-arm group sequential trial with an experimental and control
group and a time-to-event endpoint. Such trials are common, for example,
in cardiovascular disease and oncology. For instance, a drug for improving
lipids could be compared to a standard drug to see if cardiovascular end-
points such as heart attacks or death could be prevented. In oncology trials,
a new treatment might be compared to a control to see if survival or time-to-
progression might be extended. Such trials can be large and complex. This
technical report documents software in the gsDesign R package for designing
such trials. In fact, the report is intended as a tool to thoroughly document
the sample size functionality in the gsDesign R package that is supported by
the nSurv() and gsSurv() functions. Some common issues that arise that
are dealt with by this software are:

• All designs assume a proportional hazards model.
• Piecewise constant enrollment rates are allowed given that enrollment may

be slow initially during study ramp-up.
• Piecewise exponential failure rates are allowed to allow changing outcome

incidence over time.
• Piecewise exponential censoring rates allow changing dropout rates by

treatment group and over time.
• A patient population may be stratified to allow subgroups with different

underlying enrollment rates as well as differing incidence rates for end-
points and censoring.

• The software computes expected study durations and timing of interim
analyses as well as the expected enrollment and number of events at interim
analyses.

• Statistical bounds are given in terms of Z-value cutoffs for test statistics as
well as approximate hazard ratios required to cross such bounds; additional
computations available for more general group sequential designs are also
available from other gsDesign package routines.
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6 Preface

In the following, we assume a given Type I error, timing of interim analyses,
endpoint event rates and censoring rates. There are two general approaches
to carrying out calculations.

1. Assuming fixed accrual duration and minimum follow-up duration deter-
mine the accrual rate and sample size required to provide the desired
power.

2. Assume given accrual rates over time and vary accrual or follow-up dura-
tion to achieve a desired power.

A group sequential design is generally defined by Type I and Type II error, the
number and timing of interim analyses and the boundaries at interim anal-
yses. For many endpoint types, timing is linear in the number of evaluable
observations. For time-to-event endpoints, timing is related to the number of
endpoint events available for analysis, which is generally a non-linear func-
tion of accrual rates and duration, endpoint event rates, censoring rates and
duration of follow-up after accrual termination. Lachin and Foulkes [1986]
have provided a general formulation for calculating the expected number of
events over time in the scenarios described above. They also derive the sample
size method used here for the case where enrollment and study durations are
fixed, which requires deriving enrollment rates required to achieve the desired
Type I error and power. Their methods for calculating power are extended
to compute power for similarly complex designs, but where enrollment or
follow-up duration are varied to achieve power given fixed enrollment rates;
such methods are analogous to those of Kim and Tsiatis [1990].

This document is organized based on supporting the following calculations:

• Computing the probability that any individual entering the study will
have an endpoint observed as a function of random enrollment, event, and
censoring times. This calculation, presented in Section 2, is key to all
other quantities considered. The routine provided in the gsDesign package
documented in Section 2 is eEvents().

• Designing a fixed (single analysis) trial with a time-to-event endpoint is
presented in Section 3 where the nSurv() routine in the gsDesign package
is defined.

• Designing a group sequential trial with a time-to-event endpoint is pre-
sented in Section 4, where the gsDesign function gsSurv() is defined. Sup-
porting routines in gsDesign to compute the expected number of events at
a given point in time (nEventsIA()) or the time required for the expected
number of events to reach a given proportion of the final planned number
(tEventsIA()).

Each section presents extensive examples to show how to use the key routines.
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Summary of updates

• August, 2015. Updated nEventsIA() to work correctly for stratified pop-
ulations when the simple = TRUE option is chosen. This also impacted
tEventsIA() for stratified populations.

• August, 2023 (ONGOING)
– Updated gsSurv() to enable power computation
– Created gsSurvCalendar() to enable calendar-based interim analysis

planning
– Incorporated revisions of code that have been put into gsDesign package
– Fixing stratified sample size computation
– Added EDC0, EDC1 to output of gsSurv() to match help file output

specification.
• April, 2025. Migrate from Sweave document to Quarto book.





Chapter 1

Computing expected number of events
over time

1.1 General formulation

We will consider a single treatment group and stratum and assume subjects
enroll according to a Poisson process with entry rate 𝑔(𝑡) ≥ 0 for 𝑡 > 0.
Denote the number of subjects enrolled at or before time 𝑡 by 𝑁(𝑡) for 𝑡 ≥ 0.
The expected number of subjects enrolled by time 𝑡 is simply

𝐸{𝑁(𝑡)} = 𝐺(𝑡) = ∫
𝑡

0
𝑔(𝑠)𝑑𝑠. (1.1)

We assume the study runs from time 0 to some time 𝑡𝑚 > 0 where 𝑚 is a
positive integer we will further define shortly. We assume the time to event
is independent and identically distributed for all subjects enrolled. We also
assume the censoring time is independent and identically distributed for all
subjects enrolled. For an individual, let 𝑋 > 0 denote the duration from entry
into the trial until an event and 𝑌 > 0 denote the duration from entry into
the trial until loss-to-follow-up. The duration of time a subject is followed is
𝑇 = min(𝑋, 𝑌 ). We assume the pair 𝑋, 𝑌 is independent of entry time.

Denote the number of events observed by time 𝑡 by 𝐷(𝑡) for 𝑡 ≥ 0. The
expected number of events observed by time 𝑡𝑚 is

𝐸{𝐷(𝑡𝑚)} = ∫
𝑡𝑚

0
𝑃{𝑋 ≤ 𝑡𝑚 − 𝑢, 𝑋 ≤ 𝑌 }𝑔(𝑢)𝑑𝑢. (1.2)

With a change of variables from 𝑢 to 𝑡 = 𝑡𝑚 − 𝑢 we have

𝐸{𝐷(𝑡𝑚)} = ∫
𝑡𝑚

0
𝑃{𝑋 ≤ 𝑡, 𝑋 ≤ 𝑌 }𝑔(𝑈 ≤ 𝑡𝑚 − 𝑡)𝑑𝑡. (1.3)

9



10 1 Computing expected number of events over time

1.2 Piecewise failure and enrollment distibutions

Here we define a piecewise random variable and key related probabilities and
follow with a corresponding general formulation for calculating 𝑃{𝛿 = 1}.

1.2.1 General definitions

Recall that 𝑚 is a positive integer. For 𝑖 = 1, 2, … , 𝑚 we assume We assume
0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑚 and for 𝑖 = 1, 2, … , 𝑚 let 𝑠𝑖 = 𝑡𝑖 − 𝑡𝑖−1. We define
random variables that will be used to define 𝑋 and 𝑌 on a piecewise basis
over the intervals (𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, 2, … , 𝑚 as follows.

• For 𝑖 = 1, 2, … , 𝑚, we assume 𝑋𝑖 > 0, 𝑌𝑖 > 0 are random variables that
are independent of the study entry time 𝑈 .

• We let 𝑋𝑖 and 𝑌𝑖 define 𝑋 and 𝑌 , respectively, on the interval (𝑡𝑖−1, 𝑡𝑖],
𝑖 = 1, 2, … , 𝑚, as follows.
– If 𝑋1 ≤ 𝑡1 = 𝑠1, then 𝑋 = 𝑋1.
– For 𝑖 = 2, 3, … , 𝑚 − 1 recursively define 𝑋 = 𝑡𝑖−1 + 𝑋𝑖 if 𝑋 has not

been yet defined and 𝑋𝑖 ≤ 𝑠𝑖.
– If 𝑋 has not been otherwise defined above, let 𝑋 = 𝑡𝑚−1 + 𝑋𝑚.

𝑌 is defined analogously by 𝑌1, 𝑌2, … , 𝑌𝑚.

For 𝑖 = 1, 2, … , 𝑚 we assume

𝑞𝑖 = 𝑃{𝑋𝑖 > 𝑠𝑖, 𝑌𝑖 > 𝑠𝑖} (1.4)

𝑄𝑖 ≡ 𝑃{𝑋 > 𝑡𝑖, 𝑌 > 𝑡𝑖} =
𝑖

∏
𝑗=1

𝑃{𝑋𝑖 > 𝑠𝑖, 𝑌𝑖 > 𝑠𝑖} =
𝑖

∏
𝑗=1

𝑞𝑗. (1.5)

𝑝𝑖 = 𝑃{𝑡𝑖−1 < 𝑋 ≤ 𝑡𝑖, 𝑋 ≤ 𝑌 } = 𝑄𝑖−1𝑃{𝑋𝑖 ≤ 𝑠𝑖, 𝑋𝑖 ≤ 𝑌𝑖} (1.6)

and let

𝑃𝑖 ≡ 𝑃{𝑇 ≤ 𝑡𝑖, 𝑋 ≤ 𝑌 } =
𝑖

∑
𝑗=1

𝑝𝑗. (1.7)

As an example, if 𝑋𝑖, 𝑌𝑖, 𝑖 = 1, 2, … , 𝑚 are all independent these probability
assumptions are automatically satisified.

We will break the calculation of interest into intervals. Denote

𝐸{𝐷(𝑡𝑚)} =
𝑚

∑
𝑖=1

𝐴𝑖 (1.8)

where for 𝑖 = 1, 2, … , 𝑚
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𝐴𝑖 = ∫
𝑡𝑖

𝑡𝑖−1

𝑃{𝑋 ≤ 𝑡𝑖, 𝑋 ≤ 𝑌 }𝑔(𝑡𝑚 − 𝑡)𝑑𝑡

= 𝑃𝑖−1(𝐺(𝑡𝑚 − 𝑡𝑖−1) − 𝐺(𝑡𝑚 − 𝑡𝑖)) + 𝑄𝑖−1𝐵𝑖 (1.9)

where
𝐵𝑖 = ∫

𝑠𝑖

0
𝑃{𝑋𝑖 ≤ 𝑠, 𝑋𝑖 ≤ 𝑌𝑖}𝑔(𝑡𝑚 − (𝑡𝑖−1 + 𝑠))𝑑𝑠 (1.10)

We are now left to calculate 𝑝𝑖, 𝑞𝑖, and 𝐵𝑖, 𝑖 = 1, 2, … , 𝑚 given specific distri-
butional assumptions. Applying equations (1.4)-(1.10) we can then compute
𝐸{𝐷(𝑡𝑚)}.

1.2.2 Definition of a piecewise exponential failure time

For 𝑖 = 1, 2, … , 𝑚 we assume 𝑋𝑖 and 𝑌𝑖 are independent and exponentially
distributed with failure rates 𝜆𝑖 and 𝜂𝑖, respectively, where 𝑋𝑖 will be referred
to as an event time and 𝑌𝑖 a censoring or lost-to-follow-up time. The random
variables 𝑋𝑖 and 𝑌𝑖 will be used to define 𝑇 and 𝛿 over the interval (𝑡𝑖−1, 𝑡𝑖].
We define 𝛿𝑖 = 1 if min(𝑋𝑖, 𝑌𝑖) ≤ 𝑠𝑖 and 𝛿𝑖 = 0 otherwise, 𝑖 = 1, 2, … , 𝑚. We
will let 𝐽 be the first interval 𝑖 in which min(𝑋𝑖, 𝑌𝑖) ≤ 𝑠𝑖 and 𝐽 = 𝑚 + 1
if min(𝑋𝑖, 𝑌𝑖) > 𝑠𝑖, 𝑖 = 1, 2, … , 𝑚. We define the time to event 𝑇 ≡ 𝑡𝑚 if
𝐽 = 𝑚 + 1 and 𝑇 ≡ 𝑡𝐽−1 + min(𝑋𝐽 , 𝑌𝐽), otherwise. We define the indicator
that 𝑇 is an event time rather than a lost-to-follow-up time by the random
variable 𝛿′ = 1 if 𝐽 < 𝑚 + 1 and 𝑇 = 𝑡𝐽−1 + 𝑋𝐽 . The random variable 𝑇 will
be referred to as a piecewise exponential failure time with event indicator 𝛿′.

1.2.3 Exponential failure and censoring

We assume 𝑚 = 1, 𝑋 ∼ Exponential(𝜆) and 𝑌 ∼ Exponential(𝜂). We assume
uniform entry over a time (0, 𝑟] where 0 < 𝑟 ≤ 𝑡1 which implies 𝑔(𝑢) = 1/𝑟
on (0, 𝑟] and is 0 elsewhere. It is straightforward to calculate that

𝑃{𝑋 ≤ 𝑡, 𝑋 ≤ 𝑌 } = 𝜆
𝜆 + 𝜂 (1 − 𝑒−(𝜆+𝜂)𝑡)

From (1.9) we only need calculate
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𝐸{𝐷(𝑡𝑚)} = 𝐵1

= ∫
𝑡1

0

𝜆
𝜆 + 𝜂 (1 − 𝑒−(𝜆+𝜂)𝑡) 𝑔(𝑡1 − 𝑡)𝑑𝑡

= 𝜆
(𝜆 + 𝜂)𝑟 ∫

𝑡1

𝑡1−𝑟
(1 − 𝑒−(𝜆+𝜂)𝑡) 𝑑𝑡

= 𝜆
𝜆 + 𝜂 (1 − 𝑒−(𝜆+𝜂)(𝑡1−𝑟) − 𝑒−(𝜆+𝜂)𝑡1

(𝜆 + 𝜂)𝑟 ) . (1.11)

which corresponds with Lachin and Foulkes [1986].

With entry following a truncated exponential distribution for 0 < 𝑢 ≤ 𝑟 < 𝑡1
and 𝛾 ≠ 0 and 𝛾 ≠ 𝜆 + 𝜂

𝑔(𝑢) = 𝑒−𝛾𝑢

1 − 𝑒−𝛾𝑟

it is straightforward to show

𝐸{𝐷(𝑡1)} = ∫
𝑡1

𝑡1−𝑟

𝜆
𝜆 + 𝜂 (1 − 𝑒−(𝜆+𝜂)𝑡)𝛾𝑒−𝛾(𝑡1−𝑡)𝑑𝑡 (1.12)

= 𝜆
𝜆 + 𝜂 (1 + 𝛾𝑒−(𝜆+𝜂)𝑡1

𝜆 + 𝜂 − 𝛾 (1 − 𝑒(𝜆+𝜂−𝛾)𝑟

1 − 𝑒−𝛾𝑟 )) (1.13)

which again is consistent with Lachin and Foulkes [1986]. If 𝛾 = 𝜆 + 𝜂, it is
straightforward to show either directly by integrating (1.12) or by applying
l’Hôpital’s rule to (1.13) that

𝐸{𝐷(𝑡1)} = 𝜆 ( 1
𝛾 − 𝑟𝑒−𝛾𝑡1

1 − 𝑒−𝛾𝑟 ) . (1.14)

1.2.4 Piecewise constant enrollment

We now assume subjects enroll at a constant rate in each of 𝑚 intervals.
Without loss of generality, we assume that for 𝑖 = 0, 1, 2, … , 𝑚, that the
enrollment rate is [g(t)=�_{m+1-i}�0] for 𝑡 in the interval (𝑡𝑚 − 𝑡𝑖, 𝑡𝑚 − 𝑡𝑖−1).
If subject recruiting does not occur throughout the course of the trial, some
of the 𝛾𝑖 values may be 0.

1.2.5 Expected number of events

We now apply equations (1.4)-(1.10) to compute 𝑃{𝛿 = 1} using the follow-
ing.
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𝑞𝑖 = 𝑒−(𝜆𝑖+𝜂𝑖)𝑠𝑖 (1.15)

𝑝𝑖 = 𝑄𝑖−1
𝜆𝑖

𝜆𝑖 + 𝜂𝑖
(1 − 𝑒−(𝜆𝑖+𝜂𝑖)𝑠𝑖) (1.16)

For 0 ≤ 𝑠 < 𝑠𝑖 we have 𝑡𝑚 − 𝑡𝑖 < 𝑡𝑚 − (𝑡𝑖−1 − 𝑠) ≤ 𝑡𝑚 − 𝑡𝑖 which implies
𝑔(𝑡𝑚 − (𝑡𝑖−1 − 𝑠)) = 𝛾𝑚+1−𝑖 which implies

𝐵𝑖 = ∫
𝑠𝑖

0

𝛾𝑚+1−𝑖𝜆𝑖
𝜆𝑖 + 𝜂𝑖

(1 − 𝑒−(𝜆𝑖+𝜂𝑖)𝑠)𝑑𝑠

= 𝛾𝑚+1−𝑖𝜆𝑖
𝜆𝑖 + 𝜂𝑖

(𝑠𝑖 − 1 − 𝑒−(𝜆𝑖+𝜂𝑖)𝑠𝑖

𝜆𝑖 + 𝜂𝑖
) . (1.17)

We note that when 𝜆𝑖 + 𝜂𝑖 = 0 that 𝑝𝑖 = 0 and 𝐵𝑖 = 0 by definition; this is
accounted for in eEvents1(). As an exercise, show that (1.15)-(1.17) can be
used along with (1.4)-(1.10) to produce (1.11).

1.2.6 Testing event count calculations

We assume a study duration of 𝑇 = 20 months. Enrollment is assumed to
occur over the course of 5 months at a rate of 5 per month for the first 2
months, 10 per month for 1 month, and 20 per month for months 4 and 5.
This results in an expected enrollment of 60. The uniform rates to reflect
enrollment probability over time for a given study subject are 1/12 from 0 to
2, 2/12=1/6 from 2 to 3, and 4/12=1/3 from 3 to 5; enrollment rates are 0
thereafter. The exponential event rate is assumed to be high initially with a
rate of .05 in the first month, .02 for the second month, and .01 per month
thereafter. The rate of censoring is assumed to be exponential with a rate of
.03 per month from time of enrollment through 20 months. Based on this, the
𝑡𝑖 values are 0, 1, 2, 3, 5 and corresponding timepoints at the end of the study
20, 19, 18, 17, 15. Summing 𝐴𝑖 from 1 to 6 yields 𝐸{𝐷(20)} = 11.023. The
calculations in the following table were computed in an Excel spreadsheet
and can be used for checking the following calculations in R.

𝑖 𝑡𝑖 𝛾𝑚+1−𝑖 𝜆𝑖 𝜂𝑖 𝑞𝑖 𝑄𝑖 𝑝𝑖 𝑃𝑖 𝐵𝑖 𝐴𝑖

1 1 0 .05 .01 0.9418 0.9418 0.0485 0.0485 0.0000 0.0000
2 2 0 .02 .01 0.9704 0.9139 0.0186 0.0671 0.0000 0.0000
3 15 0 .01 .01 0.7711 0.7047 0.1046 0.1717 0.0000 0.0000
4 17 20 .01 .01 0.9608 0.6771 0.0138 0.1855 0.3947 7.1464
5 18 10 .01 .01 0.9802 0.6637 0.0067 0.1922 0.0497 1.8889
6 20 5 .01 .01 0.9608 0.6376 0.0130 0.2052 0.0987 1.9877
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1.2.7 R routine for computing expected number of events for
a single stratum

Calculations for the expected number of events as just outlined are performed
using the function eEvents1(). This is not accessible when the gsDesign
package is loaded since input variable checks are not performed for this lower-
level function. The more general function eEvents() will be presented in the
next section. It performs the same calculations for a stratified population.

Following are the arguments for eEvents1():

• lambda: a vector of event rates
• eta: a vector of dropout rates; if length is 1, this will be transformed to

the length of lambda
• gamma: a vector of enrollment rates
• R: a vector of durations for enrollment rates; should have the same length

as gamma; note that if sum(R) > Tfinal - minfup then the actual accrual
is limited to Tfinal - minfup but that the output R is still as input

• S: a vector of durations of failure rate periods. If lambda has length 1, this
should be NULL; otherwise, this should have length 1 less than lambda. The
final failure rate in lambda is assumed to continue indefinitely, and thus is
not specified in S

• T: a scalar indicating the time at which the expected number of events and
enrollment is to be computed

• Tfinal: a scalar indicating the time at which the trial is to be completed.
If NULL, this is assumed the same as T

• minfup: a scalar indicating the minimum follow-up for each observation at
the end of the trial. Note that min(Tfinal - minfup, sum(R)) is when
enrollment ends and thus we must have Tfinal > minfup.

The reader may skip the next section as examples later demonstrate applica-
tion of the routing.

1.2.8 The eEvents1 source code

# Do not edit source code in gsSurv.R
# This should be modified in https://github.com/keaven/gsSurv
# eEvents1 function [sinew] ----
eEvents1 <- function(lambda = 1, eta = 0, gamma = 1, R = 1, S = NULL,

T = 2, Tfinal = NULL, minfup = 0, simple = TRUE) {
if (is.null(Tfinal)) {
Tfinal <- T
minfupia <- minfup

} else {
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minfupia <- max(0, minfup - (Tfinal - T))
}

nlambda <- length(lambda)
if (length(eta) == 1 & nlambda > 1) {
eta <- rep(eta, nlambda)

}
T1 <- cumsum(S)
T1 <- c(T1[T1 < T], T)
T2 <- T - cumsum(R)
T2[T2 < minfupia] <- minfupia
i <- 1:length(gamma)
gamma[i > length(unique(T2))] <- 0
T2 <- unique(c(T, T2[T2 > 0]))
T3 <- sort(unique(c(T1, T2)))
if (sum(R) >= T) T2 <- c(T2, 0)
nperiod <- length(T3)
s <- T3 - c(0, T3[1:(nperiod - 1)])

lam <- rep(lambda[nlambda], nperiod)
et <- rep(eta[nlambda], nperiod)
gam <- rep(0, nperiod)

for (i in length(T1):1)
{
indx <- T3 <= T1[i]
lam[indx] <- lambda[i]
et[indx] <- eta[i]

}
for (i in min(length(gamma) + 1, length(T2)):2) {
gam[T3 > T2[i]] <- gamma[i - 1]

}
q <- exp(-(c(lam) + c(et)) * s)
Q <- cumprod(q)
indx <- 1:(nperiod - 1)
Qm1 <- c(1, Q[indx])
p <- c(lam) / (c(lam) + c(et)) * c(Qm1) * (1 - c(q))
p[is.nan(p)] <- 0
P <- cumsum(p)
B <- c(gam) / (c(lam) + c(et)) * c(lam) * (c(s) - (1 - c(q)) / (c(lam) + c(et)))
B[is.nan(B)] <- 0
A <- c(0, P[indx]) * c(gam) * c(s) + c(Qm1) * c(B)
if (!simple) {
return(list(
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lambda = lambda, eta = eta, gamma = gamma, R = R, S = S,
T = T, Tfinal = Tfinal, minfup = minfup, d = sum(A),
n = sum(gam * s), q = q, Q = Q, p = p, P = P, B = B, A = A, T1 = T1,
T2 = T2, T3 = T3, lam = lam, et = et, gam = gam

))
} else {
return(list(
lambda = lambda, eta = eta, gamma = gamma, R = R, S = S,
T = T, Tfinal = Tfinal, minfup = minfup, d = sum(A),
n = sum(c(gam) * c(s))

))
}

}

eEvents1(
lambda = c(1, 2, 3, 4), eta = 0, gamma = c(1, 2), R = c(1, 5), S = c(1.5, 2.5, 3.5),
T = 10, Tfinal = NULL, minfup = 0, simple = FALSE

)

$lambda
[1] 1 2 3 4

$eta
[1] 0 0 0 0

$gamma
[1] 1 2

$R
[1] 1 5

$S
[1] 1.5 2.5 3.5

$T
[1] 10

$Tfinal
[1] 10

$minfup
[1] 0

$d
[1] 10.999
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$n
[1] 11

$q
[1] 2.231302e-01 6.737947e-03 2.753645e-05 2.478752e-03 1.831564e-02

$Q
[1] 2.231302e-01 1.503439e-03 4.139938e-08 1.026188e-10 1.879529e-12

$p
[1] 7.768698e-01 2.216267e-01 1.503398e-03 4.129676e-08 1.007393e-10

$P
[1] 0.7768698 0.9984966 1.0000000 1.0000000 1.0000000

$B
[1] 0.0000000 0.0000000 6.3333517 2.5012394 0.7545789

$A
[1] 0.000000 0.000000 6.998998 3.000000 1.000000

$T1
[1] 1.5 4.0 7.5 10.0

$T2
[1] 10 9 4

$T3
[1] 1.5 4.0 7.5 9.0 10.0

$lam
[1] 1 2 3 4 4

$et
[1] 0 0 0 0 0

$gam
[1] 0 0 2 2 1

We provide an example where both 𝜆𝑖 = 0 and 𝜂𝑖 = 0 for some 𝑖. This option
will be used later when follow-up is cut off at some point in time for a study.
eEvents1(
lambda = c(1, 2, 3, 0), eta = 0, gamma = c(1, 2), R = c(1, 5), S = c(1.5, 2.5, 3.5),
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T = 10, Tfinal = NULL, minfup = 0, simple = FALSE
)

$lambda
[1] 1 2 3 0

$eta
[1] 0 0 0 0

$gamma
[1] 1 2

$R
[1] 1 5

$S
[1] 1.5 2.5 3.5

$T
[1] 10

$Tfinal
[1] 10

$minfup
[1] 0

$d
[1] 10.999

$n
[1] 11

$q
[1] 2.231302e-01 6.737947e-03 2.753645e-05 1.000000e+00 1.000000e+00

$Q
[1] 2.231302e-01 1.503439e-03 4.139938e-08 4.139938e-08 4.139938e-08

$p
[1] 0.776869840 0.221626721 0.001503398 0.000000000 0.000000000

$P
[1] 0.7768698 0.9984966 1.0000000 1.0000000 1.0000000
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$B
[1] 0.000000 0.000000 6.333352 0.000000 0.000000

$A
[1] 0.000000 0.000000 6.998998 3.000000 1.000000

$T1
[1] 1.5 4.0 7.5 10.0

$T2
[1] 10 9 4

$T3
[1] 1.5 4.0 7.5 9.0 10.0

$lam
[1] 1 2 3 0 0

$et
[1] 0 0 0 0 0

$gam
[1] 0 0 2 2 1

1.2.9 Extending expected number of events calculations to a
stratified population

We extend our notation to describe a stratified population here, to show the
calculations we wish to perform.

The stratified case is made reasonably general, allowing enrollment, event
rates and dropout rates to change over time in whatever piecewise fashion is
required. Without loss of generality, we assume the same time intervals for
constant enrollment and failure rates as before. If these differ by strata, then
any time where a change is made for any stratum is included for all strata in
the notation. Whereas we had vectors representing enrollment rates, failure
rates and censoring rates previously we now have matrices with the column
of each matrix representing a vector for each stratum. In an effort to make
this explicit, we provide notation. We assume there are 𝑠 ≥ 1 strata in the
population. For 1 ≤ 𝑖 ≤ 𝑚 we previously let 𝜆𝑖 represent a failure rate in the
𝑖-th time period. We now let 𝜆 represent a 𝑚 × 𝑠 matrix with failure rates
for a stratum in each column and for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑠 we let 𝜆𝑖𝑗 of 𝜆
represent the failure rate in the 𝑖-th time period and 𝑗-th stratum. We let the



20 1 Computing expected number of events over time

𝑚 × 𝑠 matrix 𝜂 represent the analogous set of dropout rates. We assume 𝑛
enrollment rate periods and we let 𝛾 represent an 𝑛 × 𝑠 matrix of enrollment
rates for each time period.

1.2.10 eEvents source code

The routine eEvents() works for a stratified as well as an unstratified popula-
tion. It is accessible to users when the gsDesign package is loaded as checking
is performed on input variables. The generality implied in the matrix notation
just defined is available through eEvents().
# eEvents roxy [sinew] ----
#' Expected number of events for a time-to-event study
#'
#' `eEvents()` is used to calculate the expected number of events for a
#' population with a time-to-event endpoint. It is based on calculations
#' demonstrated in Lachin and Foulkes (1986) and is fundamental in computations
#' for the sample size method they propose. Piecewise exponential survival and
#' dropout rates are supported as well as piecewise uniform enrollment. A
#' stratified population is allowed. Output is the expected number of events
#' observed given a trial duration and the above rate parameters.
#'
#' \code{eEvents()} produces an object of class \code{eEvents} with the number
#' of subjects and events for a set of pre-specified trial parameters, such as
#' accrual duration and follow-up period. The underlying power calculation is
#' based on Lachin and Foulkes (1986) method for proportional hazards assuming
#' a fixed underlying hazard ratio between 2 treatment groups. The method has
#' been extended here to enable designs to test non-inferiority. Piecewise
#' constant enrollment and failure rates are assumed and a stratified
#' population is allowed. See also \code{\link{nSurvival}} for other Lachin and
#' Foulkes (1986) methods assuming a constant hazard difference or exponential
#' enrollment rate.
#'
#' \code{print.eEvents()} formats the output for an object of class
#' \code{eEvents} and returns the input value.
#'
#' @param lambda scalar, vector or matrix of event hazard rates; rows represent
#' time periods while columns represent strata; a vector implies a single
#' stratum.
#' @param eta scalar, vector or matrix of dropout hazard rates; rows represent
#' time periods while columns represent strata; if entered as a scalar, rate is
#' constant across strata and time periods; if entered as a vector, rates are
#' constant across strata.
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#' @param gamma a scalar, vector or matrix of rates of entry by time period
#' (rows) and strata (columns); if entered as a scalar, rate is constant
#' across strata and time periods; if entered as a vector, rates are constant
#' across strata.
#' @param R a scalar or vector of durations of time periods for recruitment
#' rates specified in rows of \code{gamma}. Length is the same as number of
#' rows in \code{gamma}. Note that the final enrollment period is extended as
#' long as needed.
#' @param S a scalar or vector of durations of piecewise constant event rates
#' specified in rows of \code{lambda}, \code{eta} and \code{etaE}; this is NULL
#' if there is a single event rate per stratum (exponential failure) or length
#' of the number of rows in \code{lambda} minus 1, otherwise.
#' @param T time of analysis; if \code{Tfinal=NULL}, this is also the study
#' duration.
#' @param Tfinal Study duration; if \code{NULL}, this will be replaced with
#' \code{T} on output.
#' @param minfup time from end of planned enrollment (\code{sum(R)} from output
#' value of \code{R}) until \code{Tfinal}.
#' @param x an object of class \code{eEvents} returned from \code{eEvents()}.
#' @param digits which controls number of digits for printing.
#' @param ... Other arguments that may be passed to the generic print function.
#' @return \code{eEvents()} and \code{print.eEvents()} return an object of
#' class \code{eEvents} which contains the following items: \item{lambda}{as
#' input; converted to a matrix on output.} \item{eta}{as input; converted to a
#' matrix on output.} \item{gamma}{as input.} \item{R}{as input.} \item{S}{as
#' input.} \item{T}{as input.} \item{Tfinal}{planned duration of study.}
#' \item{minfup}{as input.} \item{d}{expected number of events.}
#' \item{n}{expected sample size.} \item{digits}{as input.}
#' @examples
#'
#' # 3 enrollment periods, 3 piecewise exponential failure rates
#' str(eEvents(
#' lambda = c(.05, .02, .01), eta = .01, gamma = c(5, 10, 20),
#' R = c(2, 1, 2), S = c(1, 1), T = 20
#' ))
#'
#' # control group for example from Bernstein and Lagakos (1978)
#' lamC <- c(1, .8, .5)
#' n <- eEvents(
#' lambda = matrix(c(lamC, lamC * 2 / 3), ncol = 6), eta = 0,
#' gamma = matrix(.5, ncol = 6), R = 2, T = 4
#' )
#'
#' @aliases print.eEvents
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#' @author Keaven Anderson \email{keaven_anderson@@merck.com}
#' @seealso \link{gsDesign package overview}, \link{plot.gsDesign},
#' \code{\link{gsDesign}}, \code{\link{gsHR}},
#' \code{\link{nSurvival}}
#' @references Lachin JM and Foulkes MA (1986), Evaluation of Sample Size and
#' Power for Analyses of Survival with Allowance for Nonuniform Patient Entry,
#' Losses to Follow-Up, Noncompliance, and Stratification. \emph{Biometrics},
#' 42, 507-519.
#'
#' Bernstein D and Lagakos S (1978), Sample size and power determination for
#' stratified clinical trials. \emph{Journal of Statistical Computation and
#' Simulation}, 8:65-73.
#' @keywords design
#' @rdname eEvents
#' @export
# eEvents function [sinew] ----
eEvents <- function(lambda = 1, eta = 0, gamma = 1, R = 1, S = NULL, T = 2,

Tfinal = NULL, minfup = 0, digits = 4) {
if (is.null(Tfinal)) {

if (minfup >= T) {
stop("Minimum follow-up greater than study duration.")

}
Tfinal <- T
minfupia <- minfup

} else {
minfupia <- max(0, minfup - (Tfinal - T))

}

if (!is.matrix(lambda)) {
lambda <- matrix(lambda, nrow = length(lambda))

}
if (!is.matrix(eta)) {
eta <- matrix(eta, nrow = nrow(lambda), ncol = ncol(lambda))

}
if (!is.matrix(gamma)) {
gamma <- matrix(gamma, nrow = length(R), ncol = ncol(lambda))

}
n <- rep(0, ncol(lambda))
d <- n
for (i in 1:ncol(lambda))
{
# KA: updated following line with as.vector statements 10/16/2017
a <- eEvents1(
lambda = as.vector(lambda[, i]), eta = as.vector(eta[, i]),
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gamma = as.vector(gamma[, i]), R = R, S = S, T = T,
Tfinal = Tfinal, minfup = minfup

)
n[i] <- a$n
d[i] <- a$d

}
T1 <- cumsum(S)
T1 <- unique(c(0, T1[T1 < T], T))
nper <- length(T1) - 1
names1 <- round(T1[1:nper], digits)
namesper <- paste("-", round(T1[2:(nper + 1)], digits), sep = "")
namesper <- paste(names1, namesper, sep = "")
if (nper < dim(lambda)[1]) {
lambda <- matrix(lambda[1:nper, ], nrow = nper)

}
if (nper < dim(eta)[1]) {
eta <- matrix(eta[1:nper, ], nrow = nper)

}
rownames(lambda) <- namesper
rownames(eta) <- namesper
colnames(lambda) <- paste("Stratum", 1:ncol(lambda))
colnames(eta) <- paste("Stratum", 1:ncol(eta))
T2 <- cumsum(R)
T2[T - T2 < minfupia] <- T - minfupia
T2 <- unique(c(0, T2))
nper <- length(T2) - 1
names1 <- round(c(T2[1:nper]), digits)
namesper <- paste("-", round(T2[2:(nper + 1)], digits), sep = "")
namesper <- paste(names1, namesper, sep = "")
if (nper < length(gamma)) {
gamma <- matrix(gamma[1:nper, ], nrow = nper)

}
rownames(gamma) <- namesper
colnames(gamma) <- paste("Stratum", 1:ncol(gamma))
x <- list(
lambda = lambda, eta = eta, gamma = gamma, R = R,
S = S, T = T, Tfinal = Tfinal,
minfup = minfup, d = d, n = n, digits = digits

)
class(x) <- "eEvents"
return(x)

}
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1.2.11 Print function for eEvents()

Here we provide a print function for output generated by eEvents(). This
will be demonstrated along with eEvents() in the next section. A supportive
function periods() used by the print function for eEvents() is shown first.
This is not made visible to users of the gsDesign package.
# periods,
# file = "R/periods.R"

# print.eEvents roxy [sinew] ----
#' @rdname eEvents
#' @export
# print.eEvents function [sinew] ----
print.eEvents <- function(x, digits = 4, ...) {

if (!inherits(x, "eEvents")) {
stop("print.eEvents: primary argument must have class eEvents")

}
cat("Study duration: Tfinal=",
round(x$Tfinal, digits), "\n",
sep = ""

)
cat("Analysis time: T=",
round(x$T, digits), "\n",
sep = ""

)
cat("Accrual duration: ",
round(min(
x$T - max(0, x$minfup - (x$Tfinal - x$T)),
sum(x$R)

), digits), "\n",
sep = ""

)
cat("Min. end-of-study follow-up: minfup=",
round(x$minfup, digits), "\n",
sep = ""

)
cat("Expected events (total): ",
round(sum(x$d), digits), "\n",
sep = ""

)
if (length(x$d) > 1) {
cat(
"Expected events by stratum: d=",
round(x$d[1], digits)
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)
for (i in 2:length(x$d)) {
cat(paste("", round(x$d[i], digits)))

}
cat("\n")

}
cat("Expected sample size (total): ",
round(sum(x$n), digits), "\n",
sep = ""

)
if (length(x$n) > 1) {
cat(
"Sample size by stratum: n=",
round(x$n[1], digits)

)
for (i in 2:length(x$n)) {
cat(paste("", round(x$n[i], digits)))

}
cat("\n")

}
nstrata <- dim(x$lambda)[2]
cat("Number of strata: ",
nstrata, "\n",
sep = ""

)
cat("Accrual rates:\n")
print(round(x$gamma, digits))
cat("Event rates:\n")
print(round(x$lambda, digits))
cat("Censoring rates:\n")
print(round(x$eta, digits))
return(x)

}

1.2.12 Example calculations in R

We now perform the computation from Section 1.2.5 using eEvents(), the
function available for users from the gsDesign package. We begin with a
single stratum with piecewise exponential failure and piecewise continuous
enrollment.
eEvents(
lambda = c(.05, .02, .01), eta = .01, gamma = c(5, 10, 20),



26 1 Computing expected number of events over time

R = c(2, 1, 2), S = c(1, 1), T = 20
)

Study duration: Tfinal=20
Analysis time: T=20
Accrual duration: 5
Min. end-of-study follow-up: minfup=0
Expected events (total): 11.023
Expected sample size (total): 60
Number of strata: 1
Accrual rates:

Stratum 1
0-2 5
2-3 10
3-5 20
Event rates:

Stratum 1
0-1 0.05
1-2 0.02
2-20 0.01
Censoring rates:

Stratum 1
0-1 0.01
1-2 0.01
2-20 0.01

Following is an example with multiple strata.
x <- eEvents(
lambda = matrix(c(.05, .02, .01, .1, .04, .02), nrow = 3),
eta = .01, gamma = matrix(c(5, 10, 20, 5, 10, 20), nrow = 3),
R = c(2, 1, 2), S = c(1, 1), T = 20

)
x$n

[1] 60 60
x$d

[1] 11.02302 19.95135

The variables lambda, eta, and gamma provide the failure rates, censoring
rates and enrollment rates, respectively. R is a scalar or vector with the dura-
tion of each enrollment rate period. The variable S specifies the duration of
initial failure rate periods; should be NULL if only one failure rate period or 1
less than the number of failure rate periods, otherwise. After the initial two
failure rate periods, the final failure rate is assumed to continue indefinitely.
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Each of these can be a scalar, vector or matrix; see the eEvents() help file
for further clarification.

An additional capability for these routines is to incorporate a minimum follow-
up requirement at the end of the study. We will want to use the routine
for both final and interim timepoints. To appropriately incorporate the mini-
mum follow-up at final analysis, the minimum end-of-study follow-up (minfup
which defaults to 0) and the time at the end of the study (Tfinal; default
is NULL) may be specified. If not specified, the final analysis time Tfinal is
assumed to be the same as the input variable T and will be output as such.
T is always the study time (time since beginning of enrollment) we are con-
sidering for the expected number of events. The minimum follow-up at an
interim analysis may be 0 or, if the interim timing is close enough to the
final, minfup - (Tfinal - T). The routine will stop accrual according to
the minimum of Tfinal - minfup and the sum of values in R; this is done
without changing the input values of either on return from the routine. As a
simple example, we consider the following modification of the above.
eEvents(
lambda = c(.05, .02, .01), eta = .01, gamma = c(5, 10, 20),
R = c(2, 1, 20), S = c(1, 1), T = 18, Tfinal = 22, minfup = 6

)

Study duration: Tfinal=22
Analysis time: T=18
Accrual duration: 16
Min. end-of-study follow-up: minfup=6
Expected events (total): 35.2387
Expected sample size (total): 280
Number of strata: 1
Accrual rates:

Stratum 1
0-2 5
2-3 10
3-16 20
Event rates:

Stratum 1
0-1 0.05
1-2 0.02
2-18 0.01
Censoring rates:

Stratum 1
0-1 0.01
1-2 0.01
2-18 0.01
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1.2.13 Literature example: stratified with exponential failure,
no dropouts

Bernstein and Lagakos [1978] provided FORTRAN code and examples for
a stratified sample size, but did not provide for random dropouts and only
accounted for exponential failure rates. This is equivalent to 𝜂 = 0 for the
more general case here. Their example assumed 2 years of accrual, 2 years of
follow-up, 3 strata with 40%, 40% and 20% of enrollment, equal randomiza-
tion between 2 arms (control and experimental), control group failure rates
in the three strata of 1, .8 and .5, a hazard ratio of 2/3 (experimental to
control). The expected proportion of deaths by treatment group and stratum
are noted as .941, .899, .767 (control) and .854, .788, .625 (experimental).
To have an expected number of enrollees of 1 in each group, we require an
enrollment rate of .5 over the 2 years, or 𝛾 = .5. We calculate these numbers
as follows
lamC <- c(1, .8, .5)
n <- eEvents(
lambda = matrix(c(lamC, lamC * 2 / 3), ncol = 6), eta = 0,
gamma = matrix(.5, ncol = 6), R = 2, T = 4

)
n$d

[1] 0.9414902 0.8992911 0.7674558 0.8544147 0.7883950 0.6252700

Now for each patient enrolled in the study overall, we compute the expected
number events per treatment group given the above enrollment proportions
and event rates. First, we do this calculations using the above computation.
Then, we follow with direct computation from eEvents() by setting the rates
so there is an expected enrollment of 1 patient.
sum(n$d[1:3] * c(.4, .4, .2)) / 2

[1] 0.4449018
sum(n$d[4:6] * c(.4, .4, .2)) / 2

[1] 0.391089
n <- eEvents(
lambda = matrix(c(lamC, lamC * 2 / 3), ncol = 6), eta = 0,
gamma = matrix(.25 * c(.4, .4, .2, .4, .4, .2), ncol = 6), R = 2, T = 4

)
c(sum(n$d[1:3]), sum(n$d[4:6]))

[1] 0.4449018 0.3910890



Chapter 2

Sample size for a fixed design

There are two approaches to sizing a study from the literature that are pre-
sented here. Both cases will be developed for cases where time-to-event dis-
tribution assumptions include a stratified population, proportional hazards
and piecewise-exponential failure rates.

1. The Lachin and Foulkes [1986] approach where enrollment and study du-
ration are fixed while the enrollment rates are changed proportionately to
obtain sufficient enrollment and endpoints to ensure the desired power.

2. The Kim and Tsiatis [1990] method where enrollment rates are fixed and
duration of enrollment is varied to ensure power.

2.1 Notation

For the remainder of this document we consider two treatment groups: an
experimental group with parameters denoted with a subscript 𝐸 and a control
group with parameters denoted with a subscript 𝐶. We will work just with
piecewise exponential failure rates and piecewise continuous enrollment. The
proportion of patients randomized to the experimental group will be denoted
by 𝜉. Recall that we have used 𝑔() to denote the enrollment rate over time.
We will now assume the enrollment rate in the experimental group is 𝜉𝑔(),
while (1 − 𝜉)𝑔() is the enrollment rate in the control group. For piecewise
constant enrollment we assumed 𝑔(𝑡) = 𝛾𝑖 for 𝑡 in (𝑡𝑖−1, 𝑡𝑖], for 𝑖 from 1 to 𝑚
and 0 = 𝑡0 < 𝑡1 … < 𝑡𝑚.

We will use matrix to notation to abbeviate many of the assumptions for
each treatment group.

29
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2.2 The basic equation

The two methods will be developed in separate functions initially. Then a
single function nSurv() will be developed that is intended for to be made
visible to users from the gsDesign package.

2.3 Asymptotic approximation for power and sample
size

We will use the formulation of Lachin and Foulkes [1986] and their equation
(2.4) for the asymptotic approximation relating power to sample size for a
proportional hazards model. We generalize their results for the case when the
null hypothesis does not specify equal hazards. Denote the null hypothesis
failure rates for control and experimental treatment groups as 𝜆00 and 𝜆01,
respectively. Denote the alternate hypothesis rates as 𝜆10 and 𝜆11. Further,
denote the alternate hypothesis hazard ratio ℎ1 = 𝜆11/𝜆10, and the null
hypothesis hazard ratio ℎ0 = 𝜆01/𝜆00. We let censoring rates be specific to
the control (𝜂0) and experimental (𝜂1) groups; these values are only implicit
in the equations below. Lachin and Foulkes assumed a null hypothesis with
no difference between failure rates in the control and experimental rates and
test for superiority. That is, 𝜆00 = 𝜆01 (ℎ0 = 1) and 𝜆10 < 𝜆01 (ℎ1 < 1). They
set event rates under the null hypothesis so that the the weighted average
event rate is the same under the null and alternate hypotheses:

𝜆00 = 𝜆01 = �̄� = (1 − 𝜉)𝜆10 + 𝜉𝜆11. (2.1)

The apparent intent of this is to equalize the variance for the log hazard ratio
under null and alternative hypotheses. While this will not be exactly the case,
we will check the expected number of events under the null and alternate
hypotheses later to see that the approximation works reasonably well. The
Lachin and Foulkes power equation for proportional hazards translates in our
notation to:

√
𝑁 ln(𝐻𝑅) = 𝑍𝛼√𝐸 {𝛿|�̄�, 𝜂}−1 (𝜉−1 + (1 − 𝜉)−1)

+𝑍𝛽√𝐸 {𝛿|𝜆1, 𝜂}−1 𝜉−1 + 𝐸 {𝛿|𝜆0, 𝜂}−1 (1 − 𝜉)−1 (2.2)

Lachin and Foulkes did not cover any cases other than equality under the null
hypothesis; (i.e., the assumed ℎ0 ≠ 1 or, equivalently, 𝜆00 ≠ 𝜆01). Equation
(2.2) generalizes in this case to
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√
𝑁 ln (ℎ1

ℎ0
) = 𝑍𝛼√𝐸 {𝛿|𝜆01, 𝜂1}−1 𝜉−1 + 𝐸 {𝛿|𝜆00, 𝜂0}−1 (1 − 𝜉)−1

+𝑍𝛽√𝐸 {𝛿|𝜆11, 𝜂1}−1 𝜉−1 + 𝐸 {𝛿|𝜆10, 𝜂0}−1 (1 − 𝜉)−1(2.3)

Note that the computations inside square root signs are variance approxi-
mations. When multiple strata are considered, we sum the variance approx-
imations across strata; we will assume a common hazard ratio across strata
- although it would appear that power for testing for a weighted average of
the log hazard ratios across strata might be considered with the same ap-
proach. With version 3.x.x we changed the weighting across strata and the
piecewise exponential failure windows to inverse-variance weighted sum. [IN
DEVELOPMENT!!!]. To apply equation (2.3), we need specific rates under
both the null and alternate hypotheses. For superiority above we started with
alternate hypothesis rates and computed rates for the null hypothesis. This
also seems appropriate when testing for non-inferiority. Since

𝜆01 = ℎ0𝜆00,

the average of the null hypothesis rates weighted by randomization ratio of
experimental to control 𝑟 is

�̄� = 𝜆00 + 𝑟𝜆01
1 + 𝑟 = 𝜆00(1 + ℎ0𝑟)

1 + 𝑟 .

We have the analogous equation under the alternate hypothesis and we will
assume the same �̄�:

�̄� = 𝜆10(1 + ℎ1𝑟)
1 + 𝑟 .

Given the fixed values for ℎ0, ℎ1, 𝑟 and 𝜆10 we can solve for

𝜆00 = 1 + ℎ1𝑟
1 + ℎ0𝑟𝜆10

and
𝜆10 = ℎ0𝜆00.

2.4 A period naming utility

We will want to make it clear upon return from any sample size computa-
tion what enrollment periods and failure rate periods were assumed. A sim-
ple period naming function will make this possible. We define the function
nameperiod() and provide an initial example:



32 2 Sample size for a fixed design

# nameperiod function [sinew] ----
nameperiod <- function(R, digits = 2) {

if (length(R) == 1) {
return(paste("0-", round(R, digits), sep = ""))

}
R0 <- c(0, R[1:(length(R) - 1)])
return(paste(round(R0, digits), "-", round(R, digits), sep = ""))

}

Now we consider enrollment period durations, convert these to cumulative
durations and name them.
R <- c(1, 2, 3)
gamma <- matrix(c(4, 5, 6), nrow = 3)
rownames(gamma) <- nameperiod(cumsum(R))
gamma

[,1]
0-1 4
1-3 5
3-6 6

2.5 Fixed enrollment and study duration

Equation (2.3) can be solved directly given the values of 𝐸{𝛿|𝜆, 𝜂} for the var-
ious values of 𝜆 and 𝜂. That is, these values do not change with proportional
increases or decreases in enrollment rates over a fixed duration of time.

2.5.1 LFPWE source

Note that on output, the input enrollment duration R is altered to ensure T -
minfup = sum(R). This may eliminate some enrollment periods and/or alter
the final returned value of R. The returned value of gamma is also checked so
that the length of the returned value matches the length of the returned R.
# LFPWE function [sinew] ----
LFPWE <- function(alpha = .025, sided = 1, beta = .1,

lambdaC = log(2) / 6, hr = .5, hr0 = 1, etaC = 0, etaE = 0,
gamma = 1, ratio = 1, R = 18, S = NULL, T = 24, minfup = NULL) {

# set up parameters
zalpha <- -stats::qnorm(alpha / sided)
zbeta <- -stats::qnorm(beta)
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if (is.null(minfup)) minfup <- max(0, T - sum(R))
if (length(R) == 1) {
R <- T - minfup

} else if (sum(R) != T - minfup) {
cR <- cumsum(R)
nR <- length(R)
if (cR[length(cR)] < T - minfup) {
cR[length(cR)] <- T - minfup

} else {
cR[cR > T - minfup] <- T - minfup
cR <- unique(cR)

}
if (length(cR) > 1) {
R <- cR - c(0, cR[1:(length(cR) - 1)])

} else {
R <- cR

}
if (nR != length(R)) {

if (is.vector(gamma)) {
gamma <- gamma[1:length(R)]

} else {
gamma <- gamma[1:length(R), ]

}
}

}
ngamma <- length(R)
if (is.null(S)) {
nlambda <- 1

} else {
nlambda <- length(S) + 1

}
Qe <- ratio / (1 + ratio)
Qc <- 1 - Qe

# compute H0 failure rates as average of control, experimental
if (length(ratio) == 1) {
lambdaC0 <- (1 + hr * ratio) / (1 + hr0 * ratio) * lambdaC
gammaC <- gamma * Qc
gammaE <- gamma * Qe

} else {
lambdaC0 <- lambdaC %*% diag((1 + hr * ratio) / (1 + hr0 * ratio))
gammaC <- gamma %*% diag(Qc)
gammaE <- gamma %*% diag(Qe)

}
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# do computations
eDC0 <- eEvents(
lambda = lambdaC0, eta = etaC, gamma = gammaC,
R = R, S = S, T = T, minfup = minfup

)$d
eDE0 <- eEvents(
lambda = lambdaC0 * hr0, eta = etaE, gamma = gammaE,
R = R, S = S, T = T, minfup = minfup

)$d
eDC <- eEvents(
lambda = lambdaC, eta = etaC, gamma = gammaC,
R = R, S = S, T = T, minfup = minfup

)
eDE <- eEvents(
lambda = lambdaC * hr, eta = etaE, gamma = gammaE,
R = R, S = S, T = T, minfup = minfup

)

n <- ((zalpha * sqrt(1 / sum(eDC0) + 1 / sum(eDE0)) +
zbeta * sqrt(1 / sum(eDC$d) + 1 / sum(eDE$d))

) / log(hr / hr0))^2

mx <- sum(eDC$n + eDE$n)
rval <- list(
alpha = alpha, sided = sided, beta = beta, power = 1 - beta,
lambdaC = lambdaC, etaC = etaC, etaE = etaE, gamma = n * gamma,
ratio = ratio, R = R, S = S, T = T, minfup = minfup,
hr = hr, hr0 = hr0, n = n * mx, d = n * sum(eDC$d + eDE$d),
eDC = eDC$d * n, eDE = eDE$d * n, eDC0 = eDC0 * n, eDE0 = eDE0 * n,
eNC = eDC$n * n, eNE = eDE$n * n, variable = "Accrual rate"

)
class(rval) <- "nSurv"
return(rval)

}

# print.nSurv roxy [sinew] ----
#' @rdname nSurv
#' @export
# print.nSurv function [sinew] ----
print.nSurv <- function(x, digits = 4, ...) {

if (!inherits(x, "nSurv")) {
stop("Primary argument must have class nSurv")

}
x$digits <- digits
x$sided <- 1
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cat("Fixed design, two-arm trial with time-to-event\n")
cat("outcome (Lachin and Foulkes, 1986).\n")
cat("Solving for: ", x$variable, "\n")
cat("Hazard ratio H1/H0=",
round(x$hr, digits),
"/", round(x$hr0, digits), "\n",
sep = ""

)
cat("Study duration: T=",
round(x$T, digits), "\n",
sep = ""

)
cat("Accrual duration: ",
round(x$T - x$minfup, digits), "\n",
sep = ""

)
cat("Min. end-of-study follow-up: minfup=",
round(x$minfup, digits), "\n",
sep = ""

)
cat("Expected events (total, H1): ",
round(x$d, digits), "\n",
sep = ""

)
cat("Expected sample size (total): ",
round(x$n, digits), "\n",
sep = ""

)
enrollper <- periods(x$S, x$T, x$minfup, x$digits)
cat("Accrual rates:\n")
print(round(x$gamma, digits))
cat("Control event rates (H1):\n")
print(round(x$lambda, digits))
if (max(abs(x$etaC - x$etaE)) == 0) {
cat("Censoring rates:\n")
print(round(x$etaC, digits))

} else {
cat("Control censoring rates:\n")
print(round(x$etaC, digits))
cat("Experimental censoring rates:\n")
print(round(x$etaE, digits))

}
cat("Power: 100*(1-beta)=",
round((1 - x$beta) * 100, digits), "%\n",
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sep = ""
)
cat("Type I error (", x$sided,
"-sided): 100*alpha=",
100 * x$alpha, "%\n",
sep = ""

)
if (min(x$ratio == 1) == 1) {
cat("Equal randomization: ratio=1\n")

} else {
cat(
"Randomization (Exp/Control): ratio=",
x$ratio, "\n"

)
}

}

2.5.2 Experimental version

# LFPWEnew function [sinew] ----
LFPWEnew <- function(alpha = .025, sided = 1, beta = .1,

lambdaC = log(2) / 6, hr = .5, hr0 = 1, etaC = 0, etaE = 0,
gamma = 1, ratio = 1, R = 18, S = NULL, T = 24, minfup = NULL) {

# set up parameters
zalpha <- -stats::qnorm(alpha / sided)
if (is.null(minfup)) minfup <- max(0, T - sum(R))
if (length(R) == 1) {
R <- T - minfup

} else if (sum(R) != T - minfup) {
cR <- cumsum(R)
nR <- length(R)
if (cR[length(cR)] < T - minfup) {
cR[length(cR)] <- T - minfup

} else {
cR[cR > T - minfup] <- T - minfup
cR <- unique(cR)

}
if (length(cR) > 1) {
R <- cR - c(0, cR[1:(length(cR) - 1)])

} else {
R <- cR

}
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if (nR != length(R)) {
if (is.vector(gamma)) {
gamma <- gamma[1:length(R)]

} else {
gamma <- gamma[1:length(R), ]

}
}

}
ngamma <- length(R)
if (is.null(S)) {
nlambda <- 1

} else {
nlambda <- length(S) + 1

}
Qe <- ratio / (1 + ratio)
Qc <- 1 - Qe

# compute H0 failure rates as average of control, experimental
if (length(ratio) == 1) {
lambdaC0 <- (1 + hr * ratio) / (1 + hr0 * ratio) * lambdaC
gammaC <- gamma * Qc
gammaE <- gamma * Qe

} else {
lambdaC0 <- lambdaC %*% diag((1 + hr * ratio) / (1 + hr0 * ratio))
gammaC <- gamma %*% diag(Qc)
gammaE <- gamma %*% diag(Qe)

}
# do computations
eDC0 <- eEvents(
lambda = lambdaC0, eta = etaC, gamma = gammaC,
R = R, S = S, T = T, minfup = minfup

)$d
eDE0 <- eEvents(
lambda = lambdaC0 * hr0, eta = etaE, gamma = gammaE,
R = R, S = S, T = T, minfup = minfup

)$d
eDC <- eEvents(
lambda = lambdaC, eta = etaC, gamma = gammaC,
R = R, S = S, T = T, minfup = minfup

)
eDE <- eEvents(
lambda = lambdaC * hr, eta = etaE, gamma = gammaE,
R = R, S = S, T = T, minfup = minfup

)
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# sample size
if (!is.null(beta)) {
zbeta <- -stats::qnorm(beta)
##### OLD
n_old <- ((zalpha * sqrt(1 / sum(eDC0) + 1 / sum(eDE0)) +
zbeta * sqrt(1 / sum(eDC$d) + 1 / sum(eDE$d))

) / log(hr / hr0))^2
cat("Control events (H0): ")
cat(eDC0)
cat("\nControl events (H1): ")
cat(eDC$d)
cat("\nExperimental events (H0): ")
cat(eDE0)
cat("\nExperimental events (H1): ")
cat(eDE$d)
cat("\nOld n: ")
cat(n_old)
cat("\n")
#####
##### NEW 20230327; NO CHANGE FOR UNSTRATIFIED
n <- ((zalpha * sqrt(1 / sum((1 / eDC0 + 1 / eDE0)^(-1))) +
zbeta * sqrt(1 / sum((1 / eDC$d + 1 / eDE$d)^(-1)))

) / log(hr / hr0))^2
cat("New n: ")
cat(n)
cat("\n")

} else {
# power

}
mx <- sum(eDC$n + eDE$n)
rval <- list(
alpha = alpha, sided = sided, beta = beta, power = 1 - beta,
lambdaC = lambdaC, etaC = etaC, etaE = etaE, gamma = n * gamma,
ratio = ratio, R = R, S = S, T = T, minfup = minfup,
hr = hr, hr0 = hr0, n = n * mx, d = n * sum(eDC$d + eDE$d),
eDC = eDC$d * n, eDE = eDE$d * n, eDC0 = eDC0 * n, eDE0 = eDE0 * n,
eNC = eDC$n * n, eNE = eDE$n * n, variable = "Accrual rate"

)
class(rval) <- "nSurv"
return(rval)

}
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2.5.3 Examples

In the Merck (ELSTIC) guidance on time-to-event sample size, an example
with 𝛼 = .025, 𝛽 = .1, 𝜆𝐶 = .2, 𝜆𝐸 = .1, 𝜂𝐶 = 𝜂𝐸 = .1, enrollment period
of 1/2 year and total study time of 2 years. The Lachin and Foulkes [1986]
method is documented to produce a sample size of 430, which is the same as
the following if rounded up to the nearest even number. This is reproduced
here by both the nSurvival() routine, which has been validated, and by
LFPWE().
LFPWE(
alpha = .025, sided = 1, beta = .1, lambdaC = .2, hr = 1 / 2,
etaC = .1, etaE = .1, gamma = 1, ratio = 1, R = .5, S = NULL, T = 2

)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual rate
Hazard ratio H1/H0=0.5/1
Study duration: T=2
Accrual duration: 0.5
Min. end-of-study follow-up: minfup=1.5
Expected events (total, H1): 90.0987
Expected sample size (total): 429.6189
Accrual rates:
[1] 859.2377
Control event rates (H1):
[1] 0.2
Censoring rates:
[1] 0.1
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1

x <- gsDesign:::nSurvival(lambda1 = .2, lambda2 = .1, eta = .1, Tr = .5, Ts = 2)
x$n

[1] 429.6189
x$nEvents

[1] 90.09875
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Study duration (fixed): Ts=2
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Accrual duration (fixed): Tr=0.5
Uniform accrual: entry="unif"
Control median: log(2)/lambda1=3.5
Experimental median: log(2)/lambda2=6.9
Censoring median: log(2)/eta=6.9
Control failure rate: lambda1=0.2
Experimental failure rate: lambda2=0.1
Censoring rate: eta=0.1
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1
Sample size based on hazard ratio=0.5 (type="rr")
Sample size (computed): n=430
Events required (computed): nEvents=91

Same example with new version:
LFPWEnew(
alpha = .025, sided = 1, beta = .1, lambdaC = .2, hr = 1 / 2,
etaC = .1, etaE = .1, gamma = 1, ratio = 1, R = .5, S = NULL, T = 2

)

We return to the Bernstein and Lagakos [1978] example of a stratified trial
with exponential failure times. Their methods incorporate only a variance es-
timate under the alternate hypothesis and yields a sample size of 172, slightly
smaller than what we compute here.
x <- LFPWE(
alpha = .05, beta = .2, hr = 2 / 3, ratio = 1,
R = 2, S = NULL, T = 4,
lambdaC = matrix(c(1, .8, .5), nrow = 1),
etaC = matrix(0, nrow = 1, ncol = 3),
etaE = matrix(0, nrow = 1, ncol = 3),
gamma = matrix(c(.4, .4, .2), nrow = 1)

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual rate
Hazard ratio H1/H0=0.6667/1
Study duration: T=4
Accrual duration: 2
Min. end-of-study follow-up: minfup=2
Expected events (total, H1): 149.455
Expected sample size (total): 178.7758
Accrual rates:
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[,1] [,2] [,3]
[1,] 35.7552 35.7552 17.8776
Control event rates (H1):

[,1] [,2] [,3]
[1,] 1 0.8 0.5
Censoring rates:

[,1] [,2] [,3]
[1,] 0 0 0
Power: 100*(1-beta)=80%
Type I error (1-sided): 100*alpha=5%
Equal randomization: ratio=1

Next, we consider the piecewise exponential case
x <- LFPWE(
alpha = .025, beta = .1,
lambdaC = matrix(c(.05, .02, .01), ncol = 1), hr = .6,
etaC = matrix(.01, nrow = 3, ncol = 1), etaE = matrix(.01, nrow = 3, ncol = 1),
gamma = matrix(c(5, 10, 20), ncol = 1),
R = c(2, 1, 2), S = c(1, 1), T = 20

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual rate
Hazard ratio H1/H0=0.6/1
Study duration: T=20
Accrual duration: 5
Min. end-of-study follow-up: minfup=15
Expected events (total, H1): 164.1408
Expected sample size (total): 1099.533
Accrual rates:

[,1]
[1,] 91.6277
[2,] 183.2555
[3,] 366.5109
Control event rates (H1):

[,1]
[1,] 0.05
[2,] 0.02
[3,] 0.01
Censoring rates:

[,1]
[1,] 0.01
[2,] 0.01
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[3,] 0.01
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1

Finally, we have all of: piecewise exponential failure, piecewise constant en-
rollment, and a stratified population with differing randomization ratio by
stratum.
x <- LFPWE(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2),
hr = .6, S = c(3, 6), ratio = 1:3, R = c(3, 3), minfup = 6, T = 30

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual rate
Hazard ratio H1/H0=0.6/1
Study duration: T=30
Accrual duration: 24
Min. end-of-study follow-up: minfup=6
Expected events (total, H1): 171.4585
Expected sample size (total): 287.077
Accrual rates:

[,1] [,2] [,3]
[1,] 1.4177 5.6707 4.2530
[2,] 2.8353 2.1265 7.0883
Control event rates (H1):

[,1] [,2] [,3]
[1,] 0.2310 0.1155 0.0770
[2,] 0.1733 0.0866 0.0578
[3,] 0.1386 0.0693 0.0462
Censoring rates:
[1] 0
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Randomization (Exp/Control): ratio= 1 2 3

2.6 Fixed enrollment rate methods

Now we assume fixed enrollment rates and adjust either the enrollment dura-
tion or follow-up duration to obtain a targeted power or number of events. As
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this is following the strategy of Kim and Tsiatis [1990], we name the function
KT(). KT() is primarily a root-finding program based on the routine KTZ()
which is used to calculate power based on (eq:npwr) or the expected number
of events under the alternate hypothesis (using eEvents()) given enrollment
rates, duration of a study and duration of follow-up.

2.6.1 KTZ source code and discussion

KTZ() can compute the difference from a targeted number of events or tar-
geted power. It can also compute power for a trial with given design charac-
teristics. Depending on the structure of other input variables, a non-NULL
input value of x may be used to set

• the minimum follow-up after a given enrollment duration (if minfup is
input as NULL), or

• the duration of enrollment.

If simple is input as TRUE, then the routine is used to return a difference
from a target value for

• a targeted total number of events in n1Target if n1Target is not NULL, or
• a targeted power (target is actually set to the standard normal inverse of

1 - beta), if beta if both n1Target and beta are NULL on input.

If simple is input as FALSE, then an nSurv object is returned giving the
power and type II error for the input parameter values for the trial.
# KTZ function [sinew] ----
KTZ <- function(x = NULL, minfup = NULL, n1Target = NULL,

lambdaC = log(2) / 6, etaC = 0, etaE = 0,
gamma = 1, ratio = 1, R = 18, S = NULL, beta = .1,
alpha = .025, sided = 1, hr0 = 1, hr = .5, simple = TRUE) {

zalpha <- -stats::qnorm(alpha / sided)
Qc <- 1 / (1 + ratio)
Qe <- 1 - Qc
# set minimum follow-up to x if that is missing and x is given
if (!is.null(x) && is.null(minfup)) {
minfup <- x
if (sum(R) == Inf) {
stop("If minimum follow-up is sought, enrollment duration must be finite")

}
T <- sum(R) + minfup
variable <- "Follow-up duration"

} else if (!is.null(x) && !is.null(minfup)) { # otherwise, if x is given, set it to accrual duration
T <- x + minfup
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R[length(R)] <- Inf
variable <- "Accrual duration"

} else { # otherwise, set follow-up time to accrual plus follow-up
T <- sum(R) + minfup
variable <- "Power"

}
# compute H0 failure rates as average of control, experimental
if (length(ratio) == 1) {
lambdaC0 <- (1 + hr * ratio) / (1 + hr0 * ratio) * lambdaC
gammaC <- gamma * Qc
gammaE <- gamma * Qe

} else {
lambdaC0 <- lambdaC %*% diag((1 + hr * ratio) / (1 + hr0 * ratio))
gammaC <- gamma %*% diag(Qc)
gammaE <- gamma %*% diag(Qe)

}

# do computations
eDC <- eEvents(
lambda = lambdaC, eta = etaC, gamma = gammaC,
R = R, S = S, T = T, minfup = minfup

)
eDE <- eEvents(
lambda = lambdaC * hr, eta = etaE, gamma = gammaE,
R = R, S = S, T = T, minfup = minfup

)
# if this is all that is needed, return difference
# from targeted number of events
if (simple && !is.null(n1Target)) {
return(sum(eDC$d + eDE$d) - n1Target)

}
eDC0 <- eEvents(
lambda = lambdaC0, eta = etaC, gamma = gammaC,
R = R, S = S, T = T, minfup = minfup

)
eDE0 <- eEvents(
lambda = lambdaC0 * hr0, eta = etaE, gamma = gammaE,
R = R, S = S, T = T, minfup = minfup

)
# compute Z-value related to power from power equation
zb <- (log(hr0 / hr) -
zalpha * sqrt(1 / sum(eDC0$d) + 1 / sum(eDE0$d))) /
sqrt(1 / sum(eDC$d) + 1 / sum(eDE$d))

# if that is all that is needed, return difference from
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# targeted value
if (simple) {

if (!is.null(beta)) {
return(zb + stats::qnorm(beta))

} else {
return(stats::pnorm(-zb))

}
}
# compute power
power <- stats::pnorm(zb)
beta <- 1 - power
# set accrual period durations
if (sum(R) != T - minfup) {

if (length(R) == 1) {
R <- T - minfup

} else {
nR <- length(R)
cR <- cumsum(R)
cR[cR > T - minfup] <- T - minfup
cR <- unique(cR)
cR[length(R)] <- T - minfup
if (length(cR) == 1) {
R <- cR

} else {
R <- cR - c(0, cR[1:(length(cR) - 1)])

}
if (length(R) != nR) {
gamma <- matrix(gamma[1:length(R), ], nrow = length(R))
gdim <- dim(gamma)

}
}

}
rval <- list(
alpha = alpha, sided = sided, beta = beta, power = power,
lambdaC = lambdaC, etaC = etaC, etaE = etaE,
gamma = gamma, ratio = ratio, R = R, S = S, T = T,
minfup = minfup, hr = hr, hr0 = hr0, n = sum(eDC$n + eDE$n),
d = sum(eDC$d + eDE$d), tol = NULL, eDC = eDC$d, eDE = eDE$d,
eDC0 = eDC0$d, eDE0 = eDE0$d, eNC = eDC$n, eNE = eDE$n,
variable = variable

)
class(rval) <- "nSurv"
return(rval)

}
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# input minimum follow-up in x and consider R fixed
KTZ(
x = 2, lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2), n1Target = 0,
hr = .6, S = c(3, 6), R = c(3, 15), minfup = NULL

)

[1] 148.8083
# set total time to x + minfup (R is variable)
KTZ(
x = 10, lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2), n1Target = 0,
hr = .6, S = c(3, 6), R = c(3, 15), minfup = 2

)

[1] 65.46827
# same as 2nd example with differing randomization ratio by stratum
KTZ(
x = 10, lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2), n1Target = 0,
hr = .6, S = c(3, 6), ratio = 1:3, R = c(3, 15), minfup = 2

)

[1] 61.67763

2.6.2 KT source code

# KT function [sinew] ----
KT <- function(alpha = .025, sided = 1, beta = .1,

lambdaC = log(2) / 6, hr = .5, hr0 = 1, etaC = 0, etaE = 0,
gamma = 1, ratio = 1, R = 18, S = NULL, minfup = NULL,
n1Target = NULL, tol = .Machine$double.eps^0.25) {

# set up parameters
ngamma <- length(R)
if (is.null(S)) {
nlambda <- 1

} else {
nlambda <- length(S) + 1

}
Qe <- ratio / (1 + ratio)
Qc <- 1 - Qe
if (!is.matrix(lambdaC)) lambdaC <- matrix(lambdaC)
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ldim <- dim(lambdaC)
nstrata <- ldim[2]
nlambda <- ldim[1]
etaC <- matrix(etaC, nrow = nlambda, ncol = nstrata)
etaE <- matrix(etaE, nrow = nlambda, ncol = nstrata)
if (!is.matrix(gamma)) gamma <- matrix(gamma)
gdim <- dim(gamma)
eCdim <- dim(etaC)
eEdim <- dim(etaE)

# search for trial duration needed to achieve desired power
if (is.null(minfup)) {

if (sum(R) == Inf) {
stop("Enrollment duration must be specified as finite")

}
left <- KTZ(.01,
lambdaC = lambdaC, n1Target = n1Target,
etaC = etaC, etaE = etaE, gamma = gamma, ratio = ratio,
R = R, S = S, beta = beta, alpha = alpha, sided = sided,
hr0 = hr0, hr = hr

)
right <- KTZ(1000,
lambdaC = lambdaC, n1Target = n1Target,
etaC = etaC, etaE = etaE, gamma = gamma, ratio = ratio,
R = R, S = S, beta = beta, alpha = alpha, sided = sided,
hr0 = hr0, hr = hr

)
if (left > 0) stop("Enrollment duration over-powers trial")
if (right < 0) stop("Enrollment duration insufficient to power trial")
y <- stats::uniroot(
f = KTZ, interval = c(.01, 10000), lambdaC = lambdaC,
etaC = etaC, etaE = etaE, gamma = gamma, ratio = ratio,
R = R, S = S, beta = beta, alpha = alpha, sided = sided,
hr0 = hr0, hr = hr, tol = tol, n1Target = n1Target

)
minfup <- y$root
xx <- KTZ(
x = y$root, lambdaC = lambdaC,
etaC = etaC, etaE = etaE, gamma = gamma, ratio = ratio,
R = R, S = S, minfup = NULL, beta = beta, alpha = alpha,
sided = sided, hr0 = hr0, hr = hr, simple = F

)
xx$tol <- tol
return(xx)
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} else {
y <- stats::uniroot(
f = KTZ, interval = minfup + c(.01, 10000), lambdaC = lambdaC,
n1Target = n1Target,
etaC = etaC, etaE = etaE, gamma = gamma, ratio = ratio,
R = R, S = S, minfup = minfup, beta = beta,
alpha = alpha, sided = sided, hr0 = hr0, hr = hr, tol = tol

)
xx <- KTZ(
x = y$root, lambdaC = lambdaC,
etaC = etaC, etaE = etaE, gamma = gamma, ratio = ratio,
R = R, S = S, minfup = minfup, beta = beta, alpha = alpha,
sided = sided, hr0 = hr0, hr = hr, simple = F

)
xx$tol <- tol
return(xx)

}
}

# set minimum follow-up (allow R to vary to get power)
KT(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2), n1Target = 10,
hr = .6, S = c(3, 6), ratio = 1:3, R = c(3, 15), minfup = 2

)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual duration
Hazard ratio H1/H0=0.6/1
Study duration: T=4.6979
Accrual duration: 2.6979
Min. end-of-study follow-up: minfup=2
Expected events (total, H1): 10
Expected sample size (total): 43.1662

Warning in max(periods): no non-missing arguments to max; returning -Inf

Accrual rates:
[,1] [,2] [,3]

[1,] 2 8 6
[2,] 4 3 10
Control event rates (H1):

[,1] [,2] [,3]
[1,] 0.2310 0.1155 0.0770
[2,] 0.1733 0.0866 0.0578
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[3,] 0.1386 0.0693 0.0462
Censoring rates:

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0
Power: 100*(1-beta)=10.9406%
Type I error (1-sided): 100*alpha=2.5%
Randomization (Exp/Control): ratio= 1 2 3

# allow minimum follow-up to vary to obtain power
KT(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2), n1Target = 100,
hr = .6, S = c(3, 6), ratio = 1:3, R = c(3, 10), minfup = NULL

)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Follow-up duration
Hazard ratio H1/H0=0.6/1
Study duration: T=16.7158
Accrual duration: 13
Min. end-of-study follow-up: minfup=3.7158
Expected events (total, H1): 100.0001
Expected sample size (total): 218
Accrual rates:

[,1] [,2] [,3]
[1,] 2 8 6
[2,] 4 3 10
Control event rates (H1):

[,1] [,2] [,3]
[1,] 0.2310 0.1155 0.0770
[2,] 0.1733 0.0866 0.0578
[3,] 0.1386 0.0693 0.0462
Censoring rates:

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0
Power: 100*(1-beta)=69.7639%
Type I error (1-sided): 100*alpha=2.5%
Randomization (Exp/Control): ratio= 1 2 3
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2.6.3 Checks

We will check same sample size and power calculations using all different
methods we have using a common example. We do not print the output
of each check due to volume, but allow the reader the option of running
the code to make comparisons. Note that nSurvival() which was validated
versus external results in a previous release of the gsDesign package and
that LFPWE() was previously checked versus nSurvival(). Thus, we begin
by deriving a sample size using LFPWE(). The input parameters are specifically
kept separate at the beginning of the code so that the user can easily check
using whatever parameters interest them. Note that nSurvival() will only
work with a single stratum and failure rate period.
lambdaC <- log(2) / 20
hr <- .5
hr0 <- 1
S <- NULL
T <- 30
R <- 20
minfup <- 10
gamma <- 8
alpha <- .025
sided <- 1
alpha <- alpha
beta <- .1
etaC <- 0
etaE <- 0
ratio <- 1

gsDesign::nSurvival(
lambda1 = lambdaC, lambda2 = lambdaC * hr, Ts = T,
Tr = R, eta = etaC, alpha = alpha, sided = sided, beta = beta

)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Study duration (fixed): Ts=30
Accrual duration (fixed): Tr=20
Uniform accrual: entry="unif"
Control median: log(2)/lambda1=20
Experimental median: log(2)/lambda2=40
Censoring only at study end (eta=0)
Control failure rate: lambda1=0.035
Experimental failure rate: lambda2=0.017
Censoring rate: eta=0
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Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1
Sample size based on hazard ratio=0.5 (type="rr")
Sample size (computed): n=228
Events required (computed): nEvents=89

y <- LFPWE(
gamma = gamma, hr = hr, lambdaC = lambdaC, R = R, T = T,
minfup = minfup, alpha = alpha, sided = sided, beta = beta

)

Now we move on to derive the above result using KTZ() which computes
power. With simple = TRUE (the default) and beta = NULL, the routine will
should return the power to match the desired 90% input above. The first call
derives R based on the input duration of accrual input in x. The second call
sets the minimum follow-up duration to minfup to the input value of x.
KTZ(
x = y$T - y$minfup, gamma = y$gamma, hr = y$hr,
lambdaC = y$lambdaC, R = Inf, minfup = y$minfup

)
KTZ(
x = y$minfup, gamma = y$gamma, hr = y$hr, lambdaC = y$lambdaC,
minfup = NULL, R = y$T - y$minfup

)

Now we move on to deriving the sample size using KT(). The first call derives
the duration of enrollment required and the second call the minimum follow-
up required to obtain the desired power.
if (length(R) == 1) {
temR <- Inf

} else {
temR <- R
temR[length(R)] <- Inf

}
KT(gamma = y, hr = hr, lambdaC = lambdaC, R = temR, minfup = minfup)
KT(gamma = y$gamma, hr = hr, lambdaC = lambdaC, R = R)

2.6.4 Examples

Using the output design as input, we compute the power both for hazard
ratios of .6 and .75:



52 2 Sample size for a fixed design

x <- KTZ(
gamma = y$gamma, hr = .6, lambdaC = y$lambdaC,
minfup = y$minfup, R = y$T - y$minfup, simple = F

)
x$power

[1] 0.69822
x <- KTZ(
gamma = y$gamma, hr = .75, lambdaC = y$lambdaC,
minfup = y$minfup, R = y$T - y$minfup, simple = F

)
x$power

[1] 0.3063416

2.7 nSurv: the general fixed design sample size and
power function

The code for the general sample size and power routine nSurv() is short as
it simply calls routines derived above. Following the code, we document the
input and output for the routine.

2.7.1 Source code

# nSurv roxy [sinew] ----
#' Advanced time-to-event sample size calculation
#'
#' \code{nSurv()} is used to calculate the sample size for a clinical trial
#' with a time-to-event endpoint and an assumption of proportional hazards.
#' This set of routines is new with version 2.7 and will continue to be
#' modified and refined to improve input error checking and output format with
#' subsequent versions. It allows both the Lachin and Foulkes (1986) method
#' (fixed trial duration) as well as the Kim and Tsiatis(1990) method (fixed
#' enrollment rates and either fixed enrollment duration or fixed minimum
#' follow-up). Piecewise exponential survival is supported as well as piecewise
#' constant enrollment and dropout rates. The methods are for a 2-arm trial
#' with treatment groups referred to as experimental and control. A stratified
#' population is allowed as in Lachin and Foulkes (1986); this method has been
#' extended to derive non-inferiority as well as superiority trials.
#' Stratification also allows power calculation for meta-analyses.
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#' \code{gsSurv()} combines \code{nSurv()} with \code{gsDesign()} to derive a
#' group sequential design for a study with a time-to-event endpoint.
#'
#' \code{print()}, \code{xtable()} and \code{summary()} methods are provided to
#' operate on the returned value from \code{gsSurv()}, an object of class
#' \code{gsSurv}. \code{print()} is also extended to \code{nSurv} objects. The
#' functions \code{\link{gsBoundSummary}} (data frame for tabular output),
#' \code{\link{xprint}} (application of \code{xtable} for tabular output) and
#' \code{summary.gsSurv} (textual summary of \code{gsDesign} or \code{gsSurv}
#' object) may be preferred summary functions; see example in vignettes. See
#' also \link{gsBoundSummary} for output
#' of tabular summaries of bounds for designs produced by \code{gsSurv()}.
#'
#' Both \code{nEventsIA} and \code{tEventsIA} require a group sequential design
#' for a time-to-event endpoint of class \code{gsSurv} as input.
#' \code{nEventsIA} calculates the expected number of events under the
#' alternate hypothesis at a given interim time. \code{tEventsIA} calculates
#' the time that the expected number of events under the alternate hypothesis
#' is a given proportion of the total events planned for the final analysis.
#'
#' \code{nSurv()} produces an object of class \code{nSurv} with the number of
#' subjects and events for a set of pre-specified trial parameters, such as
#' accrual duration and follow-up period. The underlying power calculation is
#' based on Lachin and Foulkes (1986) method for proportional hazards assuming
#' a fixed underlying hazard ratio between 2 treatment groups. The method has
#' been extended here to enable designs to test non-inferiority. Piecewise
#' constant enrollment and failure rates are assumed and a stratified
#' population is allowed. See also \code{\link{nSurvival}} for other Lachin and
#' Foulkes (1986) methods assuming a constant hazard difference or exponential
#' enrollment rate.
#'
#' When study duration (\code{T}) and follow-up duration (\code{minfup}) are
#' fixed, \code{nSurv} applies exactly the Lachin and Foulkes (1986) method of
#' computing sample size under the proportional hazards assumption when For
#' this computation, enrollment rates are altered proportionately to those
#' input in \code{gamma} to achieve the power of interest.
#'
#' Given the specified enrollment rate(s) input in \code{gamma}, \code{nSurv}
#' may also be used to derive enrollment duration required for a trial to have
#' defined power if \code{T} is input as \code{NULL}; in this case, both
#' \code{R} (enrollment duration for each specified enrollment rate) and
#' \code{T} (study duration) will be computed on output.
#'
#' Alternatively and also using the fixed enrollment rate(s) in \code{gamma},
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#' if minimum follow-up \code{minfup} is specified as \code{NULL}, then the
#' enrollment duration(s) specified in \code{R} are considered fixed and
#' \code{minfup} and \code{T} are computed to derive the desired power. This
#' method will fail if the specified enrollment rates and durations either
#' over-powers the trial with no additional follow-up or underpowers the trial
#' with infinite follow-up. This method produces a corresponding error message
#' in such cases.
#'
#' The input to \code{gsSurv} is a combination of the input to \code{nSurv()}
#' and \code{gsDesign()}.
#'
#' \code{nEventsIA()} is provided to compute the expected number of events at a
#' given point in time given enrollment, event and censoring rates. The routine
#' is used with a root finding routine to approximate the approximate timing of
#' an interim analysis. It is also used to extend enrollment or follow-up of a
#' fixed design to obtain a sufficient number of events to power a group
#' sequential design.
#'
#' @aliases nSurv print.nSurv print.gsSurv xtable.gsSurv
#' @param x An object of class \code{nSurv} or \code{gsSurv}.
#' \code{print.nSurv()} is used for an object of class \code{nSurv} which will
#' generally be output from \code{nSurv()}. For \code{print.gsSurv()} is used
#' for an object of class \code{gsSurv} which will generally be output from
#' \code{gsSurv()}. \code{nEventsIA} and \code{tEventsIA} operate on both the
#' \code{nSurv} and \code{gsSurv} class.
#' @param digits Number of digits past the decimal place to print
#' (\code{print.gsSurv.}); also a pass through to generic \code{xtable()} from
#' \code{xtable.gsSurv()}.
#' @param lambdaC scalar, vector or matrix of event hazard rates for the
#' control group; rows represent time periods while columns represent strata; a
#' vector implies a single stratum.
#' @param hr hazard ratio (experimental/control) under the alternate hypothesis
#' (scalar).
#' @param hr0 hazard ratio (experimental/control) under the null hypothesis
#' (scalar).
#' @param eta scalar, vector or matrix of dropout hazard rates for the control
#' group; rows represent time periods while columns represent strata; if
#' entered as a scalar, rate is constant across strata and time periods; if
#' entered as a vector, rates are constant across strata.
#' @param etaE matrix dropout hazard rates for the experimental group specified
#' in like form as \code{eta}; if NULL, this is set equal to \code{eta}.
#' @param gamma a scalar, vector or matrix of rates of entry by time period
#' (rows) and strata (columns); if entered as a scalar, rate is constant
#' across strata and time periods; if entered as a vector, rates are constant
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#' across strata.
#' @param R a scalar or vector of durations of time periods for recruitment
#' rates specified in rows of \code{gamma}. Length is the same as number of
#' rows in \code{gamma}. Note that when variable enrollment duration is
#' specified (input \code{T=NULL}), the final enrollment period is extended as
#' long as needed.
#' @param S a scalar or vector of durations of piecewise constant event rates
#' specified in rows of \code{lambda}, \code{eta} and \code{etaE}; this is NULL
#' if there is a single event rate per stratum (exponential failure) or length
#' of the number of rows in \code{lambda} minus 1, otherwise.
#' @param T study duration; if \code{T} is input as \code{NULL}, this will be
#' computed on output; see details.
#' @param minfup follow-up of last patient enrolled; if \code{minfup} is input
#' as \code{NULL}, this will be computed on output; see details.
#' @param ratio randomization ratio of experimental treatment divided by
#' control; normally a scalar, but may be a vector with length equal to number
#' of strata.
#' @param sided 1 for 1-sided testing, 2 for 2-sided testing.
#' @param alpha type I error rate. Default is 0.025 since 1-sided testing is
#' default.
#' @param beta type II error rate. Default is 0.10 (90\% power); NULL if power
#' is to be computed based on other input values.
#' @param tol for cases when \code{T} or \code{minfup} values are derived
#' through root finding (\code{T} or \code{minfup} input as \code{NULL}),
#' \code{tol} provides the level of error input to the \code{uniroot()}
#' root-finding function. The default is the same as for \code{\link{uniroot}}.
#' @param k Number of analyses planned, including interim and final.
#' @param test.type \code{1=}one-sided \cr \code{2=}two-sided symmetric \cr
#' \code{3=}two-sided, asymmetric, beta-spending with binding lower bound \cr
#' \code{4=}two-sided, asymmetric, beta-spending with non-binding lower bound
#' \cr \code{5=}two-sided, asymmetric, lower bound spending under the null
#' hypothesis with binding lower bound \cr \code{6=}two-sided, asymmetric,
#' lower bound spending under the null hypothesis with non-binding lower bound.
#' \cr See details, examples and manual.
#' @param astar Normally not specified. If \code{test.type=5} or \code{6},
#' \code{astar} specifies the total probability of crossing a lower bound at
#' all analyses combined. This will be changed to \eqn{1 - }\code{alpha} when
#' default value of 0 is used. Since this is the expected usage, normally
#' \code{astar} is not specified by the user.
#' @param timing Sets relative timing of interim analyses in \code{gsSurv}.
#' Default of 1 produces equally spaced analyses. Otherwise, this is a vector
#' of length \code{k} or \code{k-1}. The values should satisfy \code{0 <
#' timing[1] < timing[2] < ... < timing[k-1] < timing[k]=1}. For
#' \code{tEventsIA}, this is a scalar strictly between 0 and 1 that indicates



56 2 Sample size for a fixed design

#' the targeted proportion of final planned events available at an interim
#' analysis.
#' @param sfu A spending function or a character string indicating a boundary
#' type (that is, \dQuote{WT} for Wang-Tsiatis bounds, \dQuote{OF} for
#' O'Brien-Fleming bounds and \dQuote{Pocock} for Pocock bounds). For
#' one-sided and symmetric two-sided testing is used to completely specify
#' spending (\code{test.type=1, 2}), \code{sfu}. The default value is
#' \code{sfHSD} which is a Hwang-Shih-DeCani spending function. See details,
#' \link{Spending_Function_Overview}, manual and examples.
#' @param sfupar Real value, default is \eqn{-4} which is an
#' O'Brien-Fleming-like conservative bound when used with the default
#' Hwang-Shih-DeCani spending function. This is a real-vector for many spending
#' functions. The parameter \code{sfupar} specifies any parameters needed for
#' the spending function specified by \code{sfu}; this will be ignored for
#' spending functions (\code{sfLDOF}, \code{sfLDPocock}) or bound types
#' (\dQuote{OF}, \dQuote{Pocock}) that do not require parameters.
#' @param sfl Specifies the spending function for lower boundary crossing
#' probabilities when asymmetric, two-sided testing is performed
#' (\code{test.type = 3}, \code{4}, \code{5}, or \code{6}). Unlike the upper
#' bound, only spending functions are used to specify the lower bound. The
#' default value is \code{sfHSD} which is a Hwang-Shih-DeCani spending
#' function. The parameter \code{sfl} is ignored for one-sided testing
#' (\code{test.type=1}) or symmetric 2-sided testing (\code{test.type=2}). See
#' details, spending functions, manual and examples.
#' @param sflpar Real value, default is \eqn{-2}, which, with the default
#' Hwang-Shih-DeCani spending function, specifies a less conservative spending
#' rate than the default for the upper bound.
#' @param r Integer value controlling grid for numerical integration as in
#' Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger values
#' provide larger number of grid points and greater accuracy. Normally
#' \code{r} will not be changed by the user.
#' @param usTime Default is NULL in which case upper bound spending time is
#' determined by \code{timing}. Otherwise, this should be a vector of length
#' code{k} with the spending time at each analysis (see Details in help for \code{gsDesign}).
#' @param lsTime Default is NULL in which case lower bound spending time is
#' determined by \code{timing}. Otherwise, this should be a vector of length
#' \code{k} with the spending time at each analysis (see Details in help for \code{gsDesign}).
#' @param tIA Timing of an interim analysis; should be between 0 and
#' \code{y$T}.
#' @param target The targeted proportion of events at an interim analysis. This
#' is used for root-finding will be 0 for normal use.
#' @param simple See output specification for \code{nEventsIA()}.
#' @param footnote footnote for xtable output; may be useful for describing
#' some of the design parameters.
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#' @param fnwid a text string controlling the width of footnote text at the
#' bottom of the xtable output.
#' @param timename character string with plural of time units (e.g., "months")
#' @param caption passed through to generic \code{xtable()}.
#' @param label passed through to generic \code{xtable()}.
#' @param align passed through to generic \code{xtable()}.
#' @param display passed through to generic \code{xtable()}.
#' @param auto passed through to generic \code{xtable()}.
#' @param ... other arguments that may be passed to generic functions
#' underlying the methods here.
#' @return \code{nSurv()} returns an object of type \code{nSurv} with the
#' following components: \item{alpha}{As input.} \item{sided}{As input.}
#' \item{beta}{Type II error; if missing, this is computed.} \item{power}{Power
#' corresponding to input \code{beta} or computed if output \code{beta} is
#' computed.} \item{lambdaC}{As input.} \item{etaC}{As input.} \item{etaE}{As
#' input.} \item{gamma}{As input unless none of the following are \code{NULL}:
#' \code{T}, \code{minfup}, \code{beta}; otherwise, this is a constant times
#' the input value required to power the trial given the other input
#' variables.} \item{ratio}{As input.} \item{R}{As input unless \code{T} was
#' \code{NULL} on input.} \item{S}{As input.} \item{T}{As input.}
#' \item{minfup}{As input.} \item{hr}{As input.} \item{hr0}{As input.}
#' \item{n}{Total expected sample size corresponding to output accrual rates
#' and durations.} \item{d}{Total expected number of events under the alternate
#' hypothesis.} \item{tol}{As input, except when not used in computations in
#' which case this is returned as \code{NULL}. This and the remaining output
#' below are not printed by the \code{print()} extension for the \code{nSurv}
#' class.} \item{eDC}{A vector of expected number of events by stratum in the
#' control group under the alternate hypothesis.} \item{eDE}{A vector of
#' expected number of events by stratum in the experimental group under the
#' alternate hypothesis.} \item{eDC0}{A vector of expected number of events by
#' stratum in the control group under the null hypothesis.} \item{eDE0}{A
#' vector of expected number of events by stratum in the experimental group
#' under the null hypothesis.} \item{eNC}{A vector of the expected accrual in
#' each stratum in the control group.} \item{eNE}{A vector of the expected
#' accrual in each stratum in the experimental group.} \item{variable}{A text
#' string equal to "Accrual rate" if a design was derived by varying the
#' accrual rate, "Accrual duration" if a design was derived by varying the
#' accrual duration, "Follow-up duration" if a design was derived by varying
#' follow-up duration, or "Power" if accrual rates and duration as well as
#' follow-up duration was specified and \code{beta=NULL} was input.}
#'
#' \code{gsSurv()} returns much of the above plus an object of class
#' \code{gsDesign} in a variable named \code{gs}; see \code{\link{gsDesign}}
#' for general documentation on what is returned in \code{gs}. The value of
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#' \code{gs$n.I} represents the number of endpoints required at each analysis
#' to adequately power the trial. Other items returned by \code{gsSurv()} are:
#' \item{gs}{A group sequential design (\code{gsDesign}) object.}
#' \item{lambdaC}{As input.} \item{etaC}{As input.} \item{etaE}{As input.}
#' \item{gamma}{As input unless none of the following are \code{NULL}:
#' \code{T}, \code{minfup}, \code{beta}; otherwise, this is a constant times
#' the input value required to power the trial given the other input
#' variables.} \item{ratio}{As input.} \item{R}{As input unless \code{T} was
#' \code{NULL} on input.} \item{S}{As input.} \item{T}{As input.}
#' \item{minfup}{As input.} \item{hr}{As input.} \item{hr0}{As input.}
#' \item{eNC}{Total expected sample size corresponding to output accrual rates
#' and durations.} \item{eNE}{Total expected sample size corresponding to
#' output accrual rates and durations.} \item{eDC}{Total expected number of
#' events under the alternate hypothesis.} \item{eDE}{Total expected number of
#' events under the alternate hypothesis.} \item{tol}{As input, except when not
#' used in computations in which case this is returned as \code{NULL}. This
#' and the remaining output below are not printed by the \code{print()}
#' extension for the \code{nSurv} class.} \item{eDC}{A vector of expected
#' number of events by stratum in the control group under the alternate
#' hypothesis.} \item{eDE}{A vector of expected number of events by stratum in
#' the experimental group under the alternate hypothesis.} \item{eDC0}{A vector
#' of expected number of events by stratum in the control group under the null
#' hypothesis.} \item{eDE0}{A vector of expected number of events by stratum in
#' the experimental group under the null hypothesis.} \item{eNC}{A vector of
#' the expected accrual in each stratum in the control group.} \item{eNE}{A
#' vector of the expected accrual in each stratum in the experimental group.}
#' \item{variable}{A text string equal to "Accrual rate" if a design was
#' derived by varying the accrual rate, "Accrual duration" if a design was
#' derived by varying the accrual duration, "Follow-up duration" if a design
#' was derived by varying follow-up duration, or "Power" if accrual rates and
#' duration as well as follow-up duration was specified and \code{beta=NULL}
#' was input.}
#'
#' \code{nEventsIA()} returns the expected proportion of the final planned
#' events observed at the input analysis time minus \code{target} when
#' \code{simple=TRUE}. When \code{simple=FALSE}, \code{nEventsIA} returns a
#' list with following components: \item{T}{The input value \code{tIA}.}
#' \item{eDC}{The expected number of events in the control group at time the
#' output time \code{T}.} \item{eDE}{The expected number of events in the
#' experimental group at the output time \code{T}.} \item{eNC}{The expected
#' enrollment in the control group at the output time \code{T}.} \item{eNE}{The
#' expected enrollment in the experimental group at the output time \code{T}.}
#'
#' \code{tEventsIA()} returns
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#' @author Keaven Anderson \email{keaven_anderson@@merck.com}
#' @seealso \code{\link{gsBoundSummary}}, \code{\link{xprint}},
#' \link{gsDesign package overview}, \link{plot.gsDesign},
#' \code{\link{gsDesign}}, \code{\link{gsHR}}, \code{\link{nSurvival}}
#' @references Kim KM and Tsiatis AA (1990), Study duration for clinical trials
#' with survival response and early stopping rule. \emph{Biometrics}, 46, 81-92
#'
#' Lachin JM and Foulkes MA (1986), Evaluation of Sample Size and Power for
#' Analyses of Survival with Allowance for Nonuniform Patient Entry, Losses to
#' Follow-Up, Noncompliance, and Stratification. \emph{Biometrics}, 42,
#' 507-519.
#'
#' Schoenfeld D (1981), The Asymptotic Properties of Nonparametric Tests for
#' Comparing Survival Distributions. \emph{Biometrika}, 68, 316-319.
#' @keywords design
#' @examples
#'
#' # vary accrual rate to obtain power
#' nSurv(lambdaC = log(2) / 6, hr = .5, eta = log(2) / 40, gamma = 1, T = 36, minfup = 12)
#'
#' # vary accrual duration to obtain power
#' nSurv(lambdaC = log(2) / 6, hr = .5, eta = log(2) / 40, gamma = 6, minfup = 12)
#'
#' # vary follow-up duration to obtain power
#' nSurv(lambdaC = log(2) / 6, hr = .5, eta = log(2) / 40, gamma = 6, R = 25)
#'
#' # piecewise constant enrollment rates (vary accrual duration)
#' nSurv(
#' lambdaC = log(2) / 6, hr = .5, eta = log(2) / 40, gamma = c(1, 3, 6),
#' R = c(3, 6, 9), minfup = 12
#' )
#'
#' # stratified population (vary accrual duration)
#' nSurv(
#' lambdaC = matrix(log(2) / c(6, 12), ncol = 2), hr = .5, eta = log(2) / 40,
#' gamma = matrix(c(2, 4), ncol = 2), minfup = 12
#' )
#'
#' # piecewise exponential failure rates (vary accrual duration)
#' nSurv(lambdaC = log(2) / c(6, 12), hr = .5, eta = log(2) / 40, S = 3, gamma = 6, minfup = 12)
#'
#' # combine it all: 2 strata, 2 failure rate periods
#' nSurv(
#' lambdaC = matrix(log(2) / c(6, 12, 18, 24), ncol = 2), hr = .5,
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#' eta = matrix(log(2) / c(40, 50, 45, 55), ncol = 2), S = 3,
#' gamma = matrix(c(3, 6, 5, 7), ncol = 2), R = c(5, 10), minfup = 12
#' )
#'
#' # example where only 1 month of follow-up is desired
#' # set failure rate to 0 after 1 month using lambdaC and S
#' nSurv(lambdaC = c(.4, 0), hr = 2 / 3, S = 1, minfup = 1)
#'
#' # group sequential design (vary accrual rate to obtain power)
#' x <- gsSurv(
#' k = 4, sfl = sfPower, sflpar = .5, lambdaC = log(2) / 6, hr = .5,
#' eta = log(2) / 40, gamma = 1, T = 36, minfup = 12
#' )
#' x
#' print(xtable::xtable(x,
#' footnote = "This is a footnote; note that it can be wide.",
#' caption = "Caption example."
#' ))
#' # find expected number of events at time 12 in the above trial
#' nEventsIA(x = x, tIA = 10)
#'
#' # find time at which 1/4 of events are expected
#' tEventsIA(x = x, timing = .25)
#' @export
# nSurv function [sinew] ----
nSurv <- function(lambdaC = log(2) / 6, hr = .6, hr0 = 1, eta = 0, etaE = NULL,

gamma = 1, R = 12, S = NULL, T = NULL, minfup = NULL, ratio = 1,
alpha = 0.025, beta = 0.10, sided = 1, tol = .Machine$double.eps^0.25) {

if (is.null(etaE)) etaE <- eta
# set up rates as matrices with row and column names
# default is 1 stratum if lambdaC not input as matrix
if (is.vector(lambdaC)) lambdaC <- matrix(lambdaC)
ldim <- dim(lambdaC)
nstrata <- ldim[2]
nlambda <- ldim[1]
rownames(lambdaC) <- paste("Period", 1:nlambda)
colnames(lambdaC) <- paste("Stratum", 1:nstrata)
etaC <- matrix(eta, nrow = nlambda, ncol = nstrata)
etaE <- matrix(etaE, nrow = nlambda, ncol = nstrata)
if (!is.matrix(gamma)) gamma <- matrix(gamma)
gdim <- dim(gamma)
eCdim <- dim(etaC)
eEdim <- dim(etaE)
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if (is.null(minfup) || is.null(T)) {
xx <- KT(
lambdaC = lambdaC, hr = hr, hr0 = hr0, etaC = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, minfup = minfup, ratio = ratio,
alpha = alpha, sided = sided, beta = beta, tol = tol

)
} else if (is.null(beta)) {
xx <- KTZ(
lambdaC = lambdaC, hr = hr, hr0 = hr0, etaC = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, minfup = minfup, ratio = ratio,
alpha = alpha, sided = sided, beta = beta, simple = F

)
} else {
xx <- LFPWE(
lambdaC = lambdaC, hr = hr, hr0 = hr0, etaC = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, T = T, minfup = minfup, ratio = ratio,
alpha = alpha, sided = sided, beta = beta

)
}

nameR <- nameperiod(cumsum(xx$R))
stratnames <- paste("Stratum", 1:ncol(xx$lambdaC))
if (is.null(xx$S)) {
nameS <- "0-Inf"

} else {
nameS <- nameperiod(cumsum(c(xx$S, Inf)))

}
rownames(xx$lambdaC) <- nameS
colnames(xx$lambdaC) <- stratnames
rownames(xx$etaC) <- nameS
colnames(xx$etaC) <- stratnames
rownames(xx$etaE) <- nameS
colnames(xx$etaE) <- stratnames
rownames(xx$gamma) <- nameR
colnames(xx$gamma) <- stratnames
return(xx)

}

2.7.2 Input variables

The input variables for nSurv() are:
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• lambdaC: scalar, vector or matrix of event hazard rates for the control
group; rows represent time periods while columns represent strata; a vector
implies a single stratum.

• hr: hazard ratio (experimental/control) under the alternate hypothesis
(scalar).

• hr0: hazard ratio (experimental/control) under the null hypothesis
(scalar).

• eta: scalar, vector or matrix of dropout hazard rates for the control group;
rows represent time periods while columns represent strata; if entered as
a scalar, rate is constant accross strata and time periods; if entered as a
vector, rates are constant accross strata.

• etaE: matrix dropout hazard rates for the experimental group specified in
like form as eta; if NULL, this is set equal to eta.

• gamma: a scalar, vector or matrix of rates of entry by time period (rows)
and strata (columns); if entered as a scalar, rate is constant accross strata
and time periods; if entered as a vector, rates are constant accross strata.

• R: a scalar or vector of durations of time periods for recruitment rates
specified in rows of gamma. Length is the same as number of rows in gamma.
Note that when variable enrollment duration is specified, final enrollment
period is extended as long as needed.

• S: a scalar or vector of durations of piecewise constant event rates specified
in rows of lambda, eta and etaE; this is NULL if there is a single event rate
per stratum (exponential failure) or of length 1 less than the number of
rows in lambda otherwise.

• T: study duration.
• minfup: follow-up of last patient enrolled.
• ratio: randomization ratio of experimental treatment divided by control;

normally a scalar, but can be a vector with length equal to number of
strata.

• sided: 1 for 1-sided testing, 2 for 2-sided testing.
• alpha: type I error rate. Default is 0.025 since 1-sided testing is default.
• beta: type II error rate. Default is 0.10 (90% power); NULL if power is to

be computed based on other input values.
• tol: for cases when values are derived through route finding, the level of

error input to the uniroot() root-finding function.

2.7.3 Output structure

The output of nSurv() is of class nSurv, which is a list of the following items:

• alpha: As input.
• sided: As input.
• beta: Type II error; if missing, this is computed.
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• power: Power corresponding to input beta or computed if output beta is
computed.

• lambdaC: As input.
• etaC: As input.
• etaE: As input.
• gamma: As input unless none of the following are NULL: T, minfup, beta;

otherwise, this is a constant times the input value required to power the
trial given the other input variables.

• ratio: As input.
• R: As input unless T was NULL on input.
• S: As input.
• T: As input.
• minfup: As input.
• hr: As input.
• hr0: As input.
• n: Total expected sample size corresponding to output accrual rates and

durations.
• d: Total expected number of events under the alternate hypothesis.
• tol: As input. This and the remaining output below are not printed by

the print() extension for the nSurv class.
• eDC: A vector of expected number of events by stratum in the control

group under the alternate hypothesis.
• eDE: A vector of expected number of events by stratum in the experimental

group under the alternate hypothesis.
• eDC0: A vector of expected number of events by stratum in the control

group under the null hypothesis.
• eDE0: A vector of expected number of events by stratum in the experimen-

tal group under the null hypothesis.
• eNC: A vector of the expected accrual in each stratum in the control group.
• eNE: A vector of the expected accrual in each stratum in the experimental

group.

2.8 Documentation and primary examples for fixed
design sample size and power

We present four examples for the advanced time-to-event sample size routine
nSurv() corresponding to the four types of calculations peformed. All assume
an input hazard ratio, dropout rates, Type I error rate. The first three assume
an input Type II error rate, while the fourth computes power. The types of
calculations are:
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1. Based on a fixed enrollment duration and follow-up period, derive the
enrollment rates required to obtain adequate power [Lachin and Foulkes,
1986].

2. Based on fixed enrollment rates and a fixed minimum follow-up period, de-
rive accrual duration required to obtain adequate power [Kim and Tsiatis,
1990].

3. Based on fixed enrollment rates and accrual duration, derive study dura-
tion required to obtain adequate power [Kim and Tsiatis, 1990].

4. Based on fixed accrual duration, accrual rates and follow-up, derive study
power.

2.8.1 Derive accrual rates

We begin by specifying values for all three of 1) control event rates (lambdaC),
2) accrual duration (R), and 3) minimum follow-up (minfup). Relative accrual
rates are specified for the time periods specified in R in gamma; these are
modified on output to give absolute accrual rates required to achieve the
desired power.
x <- nSurv(
lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, T = T, minfup = minfup, ratio = ratio,
alpha = alpha, beta = beta

)

2.8.2 Derive accrual and study duration

Now we set the input study duration (T) to NULL so that it can be adjusted to
achieve desired power; enrollment duration is altered to total study duration
minus the input minimum follow-up.
x <- nSurv(
lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, T = NULL, minfup = minfup, ratio = ratio,
alpha = alpha, beta = beta

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual duration
Hazard ratio H1/H0=0.5/1
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Study duration: T=35.836
Accrual duration: 25.836
Min. end-of-study follow-up: minfup=10
Expected events (total, H1): 88.3566
Expected sample size (total): 206.6883
Accrual rates:

Stratum 1
0-25.84 8
Control event rates (H1):

Stratum 1
0-Inf 0.0347
Censoring rates:

Stratum 1
0-Inf 0
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1

KTZ(
x = x$T - sum(x$R), lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = etaC, etaE = etaE,
gamma = gamma, R = x$R, S = x$S, minfup = NULL, ratio = ratio,
alpha = alpha, beta = .1, simple = TRUE

)

[1] 6.233063e-08

2.8.3 Derive follow-up duration

Next we set the input follow-up (minfup) to NULL so that it can be derived
to achieve the desired power. Note that this routine will fail if accrual is too
little or too much in the specified time period. Thus, it is often easier to allow
study and accrual duration to vary as just shown.
x <- nSurv(
lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, T = T, minfup = NULL, ratio = ratio,
alpha = alpha, beta = beta

)

2.8.4 Derive power

Finally, we compute the power for a design by setting the input beta to NULL.
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nSurv(
lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = etaC, etaE = etaE,
gamma = gamma, R = R, S = S, T = T, minfup = minfup, ratio = ratio,
alpha = alpha, beta = NULL

)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Power
Hazard ratio H1/H0=0.5/1
Study duration: T=30
Accrual duration: 20
Min. end-of-study follow-up: minfup=10
Expected events (total, H1): 62.3423
Expected sample size (total): 160
Accrual rates:

Stratum 1
0-20 8
Control event rates (H1):

Stratum 1
0-Inf 0.0347
Censoring rates:

Stratum 1
0-Inf 0
Power: 100*(1-beta)=77.9917%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1

2.8.5 Examples with multiple strata, enrollment rates and
failure rates

Fixed accrual duration and minimum follow-up duration — solve for accrual
rate.
x <- nSurv(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2),
hr = .6, S = c(3, 6), R = c(3, 3), minfup = 6, T = 30

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual rate
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Hazard ratio H1/H0=0.6/1
Study duration: T=30
Accrual duration: 24
Min. end-of-study follow-up: minfup=6
Expected events (total, H1): 160.4241
Expected sample size (total): 255.7091
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
0-3 1.2628 5.0510 3.7883
3-24 2.5255 1.8941 6.3138
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-3 0.2310 0.1155 0.0770
3-9 0.1733 0.0866 0.0578
9-Inf 0.1386 0.0693 0.0462
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1

Fixed accrual rate and minimum follow-up duration — solve for accrual du-
ration.
x <- nSurv(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2),
hr = .6, S = c(3, 6), R = c(3, 3), minfup = 6, T = NULL

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual duration
Hazard ratio H1/H0=0.6/1
Study duration: T=22.647
Accrual duration: 16.647
Min. end-of-study follow-up: minfup=6
Expected events (total, H1): 160.7145
Expected sample size (total): 279.9995
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
0-3 2 8 6
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3-16.65 4 3 10
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-3 0.2310 0.1155 0.0770
3-9 0.1733 0.0866 0.0578
9-Inf 0.1386 0.0693 0.0462
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1

Fixed accrual rate and accrual duration — solve for minimum follow-up. Note
that this option is generally not recommended as the accrual rate or accrual
duration are the more common variables to solve for.
x <- nSurv(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2),
hr = .6, S = c(3, 6), R = c(3, 15), minfup = NULL, T = 15

)
x

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Follow-up duration
Hazard ratio H1/H0=0.6/1
Study duration: T=21.5363
Accrual duration: 18
Min. end-of-study follow-up: minfup=3.5363
Expected events (total, H1): 160.8979
Expected sample size (total): 303
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
0-3 2 8 6
3-18 4 3 10
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-3 0.2310 0.1155 0.0770
3-9 0.1733 0.0866 0.0578
9-Inf 0.1386 0.0693 0.0462
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
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0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0
Power: 100*(1-beta)=90%
Type I error (1-sided): 100*alpha=2.5%
Equal randomization: ratio=1





Chapter 3

Sample size and power for a group
sequential design

We extend the fixed design calculations performed using nSurv() to compute
sample size and power for a group sequential design. Classically, the required
number of events is increased by a factor depending on the group sequential
bounds to obtain an inflated statistical information. Under the null hypothe-
sis of equal failure distributions, this is proportional to statistical information.
While this adds another layer of approximation, we will follow this practice
here. Thus, we will increase either accrual rates, accrual duration or follow-up
duration to achieve the desired expected number of events under the alternate
hypothesis. There are two required computations we will apply in deriving
a group sequential design: first, inflating the expected number of events and
second, deriving the times at which the expected number of events for each
interim analysis equal the desired number.

3.1 Inflating the expected number of events

There are three cases to consider corresponding to the three ways we solved
the sample size for a fixed design. These involve solving for 1) accrual rate,
2) accrual duration or 3) minimum follow-up duration required to obtain a
desired number of events. To increase the expected number of events by an
inflation factor when the study duration and relative enrollments are fixed
over time requires only to increase the enrollment rate(s) by the same pro-
portion. This also increases the expected sample size by the same proportion.
The other two computations are simple applications of the function KTZ().

71
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3.2 Source code for inflating the expected number of
events

We consider fixed design and a targeted number of events greater than that
for a fixed design.
gsnSurv <- function(x, nEvents) {

if (x$variable == "Accrual rate") {
Ifct <- nEvents / x$d
rval <- list(
lambdaC = x$lambdaC, etaC = x$etaC, etaE = x$etaE,
gamma = x$gamma * Ifct, ratio = x$ratio, R = x$R, S = x$S, T = x$T,
minfup = x$minfup, hr = x$hr, hr0 = x$hr0, n = x$n * Ifct, d = nEvents,
eDC = x$eDC * Ifct, eDE = x$eDE * Ifct, eDC0 = x$eDC0 * Ifct,
eDE0 = x$eDE0 * Ifct, eNC = x$eNC * Ifct, eNE = x$eNE * Ifct,
variable = x$variable

)
} else if (x$variable == "Accrual duration") {
y <- KT(
n1Target = nEvents, minfup = x$minfup, lambdaC = x$lambdaC,
etaC = x$etaC, etaE = x$etaE,
R = x$R, S = x$S, hr = x$hr, hr0 = x$hr0, gamma = x$gamma,
ratio = x$ratio, tol = x$tol

)
rval <- list(
lambdaC = x$lambdaC, etaC = x$etaC, etaE = x$etaE,
gamma = x$gamma, ratio = x$ratio, R = y$R, S = x$S, T = y$T,
minfup = y$minfup, hr = x$hr, hr0 = x$hr0,
n = y$n, d = nEvents,
eDC = y$eDC, eDE = y$eDE, eDC0 = y$eDC0,
eDE0 = y$eDE0, eNC = y$eNC, eNE = y$eNE, tol = x$tol,
variable = x$variable

)
} else {
y <- KT(
n1Target = nEvents, minfup = NULL,
lambdaC = x$lambdaC, etaC = x$etaC,
etaE = x$etaE, R = x$R, S = x$S, hr = x$hr, hr0 = x$hr0,
gamma = x$gamma, ratio = x$ratio, tol = x$tol

)
rval <- list(
lambdaC = x$lambdaC, etaC = x$etaC, etaE = x$etaE,
gamma = x$gamma, ratio = x$ratio, R = x$R, S = x$S, T = y$T,
minfup = y$minfup, hr = x$hr, hr0 = x$hr0, n = y$n,
d = nEvents, eDC = y$eDC, eDE = y$eDE, eDC0 = y$eDC0,
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eDE0 = y$eDE0, eNC = y$eNC, eNE = y$eNE, tol = x$tol,
variable = x$variable

)
}
class(rval) <- "gsSize"
return(rval)

}

x <- nSurv(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2),
hr = .6, S = c(3, 6), R = c(3, 15), minfup = NULL, T = 15

)
x

$alpha
[1] 0.025

$sided
[1] 1

$beta
[1] 0.09999999

$power
[1] 0.9

$lambdaC
Stratum 1 Stratum 2 Stratum 3

0-3 0.2310491 0.11552453 0.07701635
3-9 0.1732868 0.08664340 0.05776227
9-Inf 0.1386294 0.06931472 0.04620981

$etaC
Stratum 1 Stratum 2 Stratum 3

0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0

$etaE
Stratum 1 Stratum 2 Stratum 3

0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0
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$gamma
Stratum 1 Stratum 2 Stratum 3

0-3 2 8 6
3-18 4 3 10

$ratio
[1] 1

$R
[1] 3 15

$S
[1] 3 6

$T
[1] 21.53628

$minfup
[1] 3.536276

$hr
[1] 0.6

$hr0
[1] 1

$n
[1] 303

$d
[1] 160.8979

$tol
[1] 0.0001220703

$eDC
[1] 27.79551 23.34026 41.29445

$eDE
[1] 22.71825 17.33116 28.41828

$eDC0
[1] 25.75003 20.70618 35.33690

$eDE0
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[1] 25.75003 20.70618 35.33690

$eNC
[1] 33.0 34.5 84.0

$eNE
[1] 33.0 34.5 84.0

$variable
[1] "Follow-up duration"

attr(,"class")
[1] "nSurv"

gsnSurv(x, 170)

$lambdaC
Stratum 1 Stratum 2 Stratum 3

0-3 0.2310491 0.11552453 0.07701635
3-9 0.1732868 0.08664340 0.05776227
9-Inf 0.1386294 0.06931472 0.04620981

$etaC
Stratum 1 Stratum 2 Stratum 3

0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0

$etaE
Stratum 1 Stratum 2 Stratum 3

0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0

$gamma
Stratum 1 Stratum 2 Stratum 3

0-3 2 8 6
3-18 4 3 10

$ratio
[1] 1

$R
[1] 3 15

$S
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[1] 3 6

$T
[1] 22.85288

$minfup
[1] 4.85288

$hr
[1] 0.6

$hr0
[1] 1

$n
[1] 303

$d
[1] 170

$eDC
[1] 28.77412 24.39549 44.04440

$eDE
[1] 23.89893 18.31081 30.57626

$eDC0
[1] 26.85077 21.75258 37.84991

$eDE0
[1] 26.85077 21.75258 37.84991

$eNC
[1] 33.0 34.5 84.0

$eNE
[1] 33.0 34.5 84.0

$tol
[1] 0.0001220703

$variable
[1] "Follow-up duration"

attr(,"class")
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[1] "gsSize"

3.3 Enrollment at interim analysis

We begin with a simple function to compute enrollment given enrollment
rates, enrollment periods and duration of enrollment. The input variable y
should be an object of class nSurv, gsSize or gsSurv. This specifies en-
rollment and event rates. nEventsIA() computes the expected number of
events at an interim analysis performed at a specific time specified in the
variable tIA. tEventsIA() uses root-finding to derive the time at which the
expected number of events is equal to a planned interim proportion (specified
in the input timing) of the final planned events. The input variable tol will
normally be left as the default by the user; this is used in the root-finding
routine uniroot(). Note that nEventsIA() was updated in August, 2015
so that the simple = TRUE option works correctly for stratified populations;
this impacted tEventsIA() as well.
# tEventsIA roxy [sinew] ----
#' @export
#' @rdname nSurv
#' @seealso
#' \code{\link[stats]{uniroot}}
#' @importFrom stats uniroot
# tEventsIA function [sinew] ----
tEventsIA <- function(x, timing = .25,

tol = .Machine$double.eps^0.25) {
T <- x$T[length(x$T)]
z <- stats::uniroot(
f = nEventsIA, interval = c(0.0001, T - .0001), x = x,
target = timing, tol = tol, simple = TRUE

)
return(nEventsIA(tIA = z$root, x = x, simple = FALSE))

}

# nEventsIA roxy [sinew] ----
#' @export
#' @rdname nSurv
# nEventsIA function [sinew] ----
nEventsIA <- function(tIA = 5, x = NULL, target = 0,

simple = TRUE) {
Qe <- x$ratio / (1 + x$ratio)
eDC <- eEvents(
lambda = x$lambdaC, eta = x$etaC,
gamma = x$gamma * (1 - Qe), R = x$R, S = x$S, T = tIA,
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Tfinal = x$T[length(x$T)], minfup = x$minfup
)
eDE <- eEvents(
lambda = x$lambdaC * x$hr, eta = x$etaC,
gamma = x$gamma * Qe, R = x$R, S = x$S, T = tIA,
Tfinal = x$T[length(x$T)], minfup = x$minfup

)
if (simple) {

if (class(x)[1] == "gsSize") {
d <- x$d

} else if (!is.matrix(x$eDC)) {
d <- sum(x$eDC[length(x$eDC)] + x$eDE[length(x$eDE)])

} else {
d <- sum(x$eDC[nrow(x$eDC), ] + x$eDE[nrow(x$eDE), ])

}
return(sum(eDC$d + eDE$d) - target * d)

} else {
return(list(
T = tIA, eDC = eDC$d, eDE = eDE$d,
eNC = eDC$n, eNE = eDE$n

))
}

}

3.4 The general group sequential design approach

We provide two variations, one with event-based (information-based)
timing of analyses (gsSurv()), the other with calendar-based timing
(gsSurvCalendar()). gsSurv() is being updated in August, 2023 as it
inadvertently did not return expected event counts under null hypothesis
when originally written. gsSurvCalendar() is being added in August, 2023.
In addition to adding calendar-based timing, gsSurvCalendar() can be
used to compute power given enrollment, failure rate, and dropout rate
assumptions. This capability is not currently available for gsSurv().
# gsSurv roxy [sinew] ----
#' @export
# gsSurv function [sinew] ----
gsSurv <- function(k = 3, test.type = 4, alpha = 0.025, sided = 1,

beta = 0.1, astar = 0, timing = 1, sfu = gsDesign::sfHSD, sfupar = -4,
sfl = gsDesign::sfHSD, sflpar = -2, r = 18,
lambdaC = log(2) / 6, hr = .6, hr0 = 1, eta = 0, etaE = NULL,
gamma = 1, R = 12, S = NULL, T = NULL, minfup = NULL, ratio = 1,
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tol = .Machine$double.eps^0.25,
usTime = NULL, lsTime = NULL) # KA: last 2 arguments added 10/8/2017

{
x <- nSurv(
lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = eta, etaE = etaE,
gamma = gamma, R = R, S = S, T = T, minfup = minfup, ratio = ratio,
alpha = alpha, beta = beta, sided = sided, tol = tol

)
y <- gsDesign::gsDesign(
k = k, test.type = test.type, alpha = alpha / sided,
beta = beta, astar = astar, n.fix = x$d, timing = timing,
sfu = sfu, sfupar = sfupar, sfl = sfl, sflpar = sflpar, tol = tol,
delta1 = log(hr), delta0 = log(hr0),
usTime = usTime, lsTime = lsTime

) # KA: last 2 arguments added 10/8/2017

z <- gsnSurv(x, y$n.I[k])
eDC <- NULL
eDE <- NULL
eDC0 <- NULL
eDE0 <- NULL
eNC <- NULL
eNE <- NULL
T <- NULL
for (i in 1:(k - 1)) {
xx <- tEventsIA(z, y$timing[i], tol)
T <- c(T, xx$T)
eDC <- rbind(eDC, xx$eDC)
eDE <- rbind(eDE, xx$eDE)
# Following a placeholder
# eDC0 <- rbind(eDC0, xx$eDC0) # Added 6/15/2023
# eDE0 <- rbind(eDE0, xx$eDE0) # Added 6/15/2023
eNC <- rbind(eNC, xx$eNC)
eNE <- rbind(eNE, xx$eNE)

}
y$T <- c(T, z$T)
y$eDC <- rbind(eDC, z$eDC)
y$eDE <- rbind(eDE, z$eDE)
# Following is a placeholder
# y$eDC0 <- rbind(eDC0, z$eDC0) # Added 6/15/2023
# y$eDE0 <- rbind(eDE0, z$eDE0) # Added 6/15/2023
y$eNC <- rbind(eNC, z$eNC)
y$eNE <- rbind(eNE, z$eNE)
y$hr <- hr
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y$hr0 <- hr0
y$R <- z$R
y$S <- z$S
y$minfup <- z$minfup
y$gamma <- z$gamma
y$ratio <- ratio
y$lambdaC <- z$lambdaC
y$etaC <- z$etaC
y$etaE <- z$etaE
y$variable <- x$variable
y$tol <- tol
class(y) <- c("gsSurv", "gsDesign")

nameR <- nameperiod(cumsum(y$R))
stratnames <- paste("Stratum", 1:ncol(y$lambdaC))
if (is.null(y$S)) {
nameS <- "0-Inf"

} else {
nameS <- nameperiod(cumsum(c(y$S, Inf)))

}
rownames(y$lambdaC) <- nameS
colnames(y$lambdaC) <- stratnames
rownames(y$etaC) <- nameS
colnames(y$etaC) <- stratnames
rownames(y$etaE) <- nameS
colnames(y$etaE) <- stratnames
rownames(y$gamma) <- nameR
colnames(y$gamma) <- stratnames
return(y)

}

# print.gsSurv roxy [sinew] ----
#' @rdname nSurv
#' @export
# print.gsSurv function [sinew] ----
print.gsSurv <- function(x, digits = 2, ...) {
cat("Time to event group sequential design with HR=", x$hr, "\n")
if (x$hr0 != 1) cat("Non-inferiority design with null HR=", x$hr0, "\n")
if (min(x$ratio == 1) == 1) {
cat("Equal randomization: ratio=1\n")

} else {
cat(
"Randomization (Exp/Control): ratio=",
x$ratio, "\n"

)



3.4 The general group sequential design approach 81

if (length(x$ratio) > 1) cat("(randomization ratios shown by strata)\n")
}
gsDesign:::print.gsDesign(x)
if (x$test.type != 1) {
y <- cbind(
x$T, (x$eNC + x$eNE) %*% rep(1, ncol(x$eNE)),
(x$eDC + x$eDE) %*% rep(1, ncol(x$eNE)),
round(gsDesign::zn2hr(x$lower$bound, x$n.I, x$ratio, hr0 = x$hr0, hr1 = x$hr), 3),
round(gsDesign::zn2hr(x$upper$bound, x$n.I, x$ratio, hr0 = x$hr0, hr1 = x$hr), 3)

)
colnames(y) <- c("T", "n", "Events", "HR futility", "HR efficacy")

} else {
y <- cbind(
x$T, (x$eNC + x$eNE) %*% rep(1, ncol(x$eNE)),
(x$eDC + x$eDE) %*% rep(1, ncol(x$eNE)),
round(gsDesign::zn2hr(x$upper$bound, x$n.I, x$ratio, hr0 = x$hr0, hr1 = x$hr), 3)

)
colnames(y) <- c("T", "n", "Events", "HR efficacy")

}
rnames <- paste("IA", 1:(x$k))
rnames[length(rnames)] <- "Final"
rownames(y) <- rnames
print(y)
cat("Accrual rates:\n")
print(round(x$gamma, digits))
cat("Control event rates (H1):\n")
print(round(x$lambda, digits))
if (max(abs(x$etaC - x$etaE)) == 0) {
cat("Censoring rates:\n")
print(round(x$etaC, digits))

} else {
cat("Control censoring rates:\n")
print(round(x$etaC, digits))
cat("Experimental censoring rates:\n")
print(round(x$etaE, digits))

}
}

We also provide an xtable function for gsSurv object types
# xtable.gsSurv roxy [sinew] ----
#' @seealso
#' \code{\link[stats]{Normal}}
#' \code{\link[xtable]{xtable}}
#' @importFrom stats pnorm
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#' @rdname nSurv
#' @export
# xtable.gsSurv function [sinew] ----
xtable.gsSurv <- function(x, caption = NULL, label = NULL, align = NULL, digits = NULL,

display = NULL, auto = FALSE, footnote = NULL, fnwid = "9cm", timename = "months", ...) {
k <- x$k
stat <- c(
"Z-value", "HR", "p (1-sided)", paste("P\\{Cross\\} if HR=", x$hr0, sep = ""),
paste("P\\{Cross\\} if HR=", x$hr, sep = "")

)
st <- stat
for (i in 2:k) stat <- c(stat, st)
an <- rep(" ", 5 * k)
tim <- an
enrol <- an
fut <- an
eff <- an
an[5 * (0:(k - 1)) + 1] <- c(paste("IA ", as.character(1:(k - 1)), ": ",
as.character(round(100 * x$timing[1:(k - 1)], 1)), "\\%",
sep = ""

), "Final analysis")
an[5 * (1:(k - 1)) + 1] <- paste("\\hline", an[5 * (1:(k - 1)) + 1])
an[5 * (0:(k - 1)) + 2] <- paste("N:", ceiling(rowSums(x$eNC)) + ceiling(rowSums(x$eNE)))
an[5 * (0:(k - 1)) + 3] <- paste("Events:", ceiling(rowSums(x$eDC + x$eDE)))
an[5 * (0:(k - 1)) + 4] <- paste(round(x$T, 1), timename, sep = " ")
if (x$test.type != 1) fut[5 * (0:(k - 1)) + 1] <- as.character(round(x$lower$bound, 2))
eff[5 * (0:(k - 1)) + 1] <- as.character(round(x$upper$bound, 2))
if (x$test.type != 1) fut[5 * (0:(k - 1)) + 2] <- as.character(round(gsHR(z = x$lower$bound, i = 1:k, x, ratio = x$ratio) * x$hr0, 2))
eff[5 * (0:(k - 1)) + 2] <- as.character(round(gsHR(z = x$upper$bound, i = 1:k, x, ratio = x$ratio) * x$hr0, 2))
asp <- as.character(round(stats::pnorm(-x$upper$bound), 4))
asp[asp == "0"] <- "$< 0.0001$"
eff[5 * (0:(k - 1)) + 3] <- asp
asp <- as.character(round(cumsum(x$upper$prob[, 1]), 4))
asp[asp == "0"] <- "$< 0.0001$"
eff[5 * (0:(k - 1)) + 4] <- asp
asp <- as.character(round(cumsum(x$upper$prob[, 2]), 4))
asp[asp == "0"] <- "$< 0.0001$"
eff[5 * (0:(k - 1)) + 5] <- asp
if (x$test.type != 1) {
bsp <- as.character(round(stats::pnorm(-x$lower$bound), 4))
bsp[bsp == "0"] <- " $< 0.0001$"
fut[5 * (0:(k - 1)) + 3] <- bsp
bsp <- as.character(round(cumsum(x$lower$prob[, 1]), 4))
bsp[bsp == "0"] <- "$< 0.0001$"
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fut[5 * (0:(k - 1)) + 4] <- bsp
bsp <- as.character(round(cumsum(x$lower$prob[, 2]), 4))
bsp[bsp == "0"] <- "$< 0.0001$"
fut[5 * (0:(k - 1)) + 5] <- bsp

}
neff <- length(eff)
if (!is.null(footnote)) {
eff[neff] <-
paste(eff[neff], "\\\\ \\hline \\multicolumn{4}{p{", fnwid, "}}{\\footnotesize", footnote, "}")

}
if (x$test.type != 1) {
xxtab <- data.frame(cbind(an, stat, fut, eff))
colnames(xxtab) <- c("Analysis", "Value", "Futility", "Efficacy")

} else {
xxtab <- data.frame(cbind(an, stat, eff))
colnames(xxtab) <- c("Analysis", "Value", "Efficacy")

}
return(xtable::xtable(xxtab,
caption = caption, label = label, align = align, digits = digits,
display = display, auto = auto, ...

))
}

3.5 Examples

3.5.1 Simple

Fixed accrual duration and follow-up duration, variable accrual rate.
w <- LFPWE(lambdaC = log(2) / 3, hr = .6, minfup = 6, T = 36)
y <- nSurv(lambdaC = log(2) / 3, hr = .6, minfup = 6, T = 36, R = Inf)
x <- gsSurv(lambdaC = log(2) / 3, hr = .6, minfup = 6, T = 36)

Fixed accrual rate and follow-up duration, variable accrual duration.
x <- gsSurv(lambdaC = log(2) / 6, hr = .6, gamma = 8, minfup = 6)
x

Time to event group sequential design with HR= 0.6
Equal randomization: ratio=1
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.
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----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 58 -0.24 0.4056 0.0148 3.01 0.0013 0.0013
2 115 0.94 0.8267 0.0289 2.55 0.0054 0.0049
3 172 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 Total E{N}
0.0000 0.0013 0.0049 0.0171 0.0233 99.9
0.2564 0.1412 0.4403 0.3185 0.9000 126.5

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
0.0000 0.4056 0.4290 0.1420 0.9767
0.2564 0.0148 0.0289 0.0563 0.1000

T n Events HR futility HR efficacy
IA 1 15.47476 123.7981 57.00202 1.065 0.450
IA 2 24.17700 193.4160 114.00405 0.838 0.621
Final 33.50127 220.0102 171.00607 0.737 0.737
Accrual rates:

Stratum 1
0-27.5 8
Control event rates (H1):

Stratum 1
0-Inf 0.12
Censoring rates:

Stratum 1
0-Inf 0

Fixed accrual rate and accrual duration, variable follow-up duration.
x <- gsSurv(lambdaC = log(2) / 6, hr = .6, gamma = 8, R = 25, minfup = NULL)
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3.5.2 Piecewise enrollment and failure rates

x <- gsSurv(
lambdaC = log(2) / c(6, 8, 10), hr = .6, gamma = c(2, 4),
S = c(3, 6), R = c(3, 3), minfup = 6, T = 20

)
x

Time to event group sequential design with HR= 0.6
Equal randomization: ratio=1
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 58 -0.24 0.4056 0.0148 3.01 0.0013 0.0013
2 115 0.94 0.8267 0.0289 2.55 0.0054 0.0049
3 173 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 Total E{N}
0.0000 0.0013 0.0049 0.0171 0.0233 100.6
0.2554 0.1412 0.4403 0.3185 0.9000 127.4

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
0.0000 0.4056 0.4290 0.1420 0.9767
0.2554 0.0148 0.0289 0.0563 0.1000

T n Events HR futility HR efficacy
IA 1 9.827039 203.8729 57.42358 1.065 0.452
IA 2 14.277264 306.0405 114.84716 0.839 0.622
Final 20.000000 306.0405 172.27073 0.737 0.737
Accrual rates:
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Stratum 1
0-3 12.24
3-14 24.48
Control event rates (H1):

Stratum 1
0-3 0.12
3-9 0.09
9-Inf 0.07
Censoring rates:

Stratum 1
0-3 0
3-9 0
9-Inf 0

3.5.3 Stratified population

We begin with the example of Bernstein and Lagakos [1978] using the LFPWE()
routine and compare to the LFPWEnew() routine. Their results with a single
(H1) variance formulation at a sample size of 172 and 150 expected events.
With gsDesign2::gs_designAHR() with a 2-variance formulation compara-
ble to here, the results are N=182 and 151 events.
LFPWE(
alpha = .05, beta = .2, hr = 2 / 3, ratio = 1,
R = 2, S = NULL, T = 4,
lambdaC = matrix(c(1, .8, .5), nrow = 1),
etaC = matrix(0, nrow = 1, ncol = 3),
etaE = matrix(0, nrow = 1, ncol = 3),
gamma = matrix(c(.4, .4, .2), nrow = 1)

)

Fixed design, two-arm trial with time-to-event
outcome (Lachin and Foulkes, 1986).
Solving for: Accrual rate
Hazard ratio H1/H0=0.6667/1
Study duration: T=4
Accrual duration: 2
Min. end-of-study follow-up: minfup=2
Expected events (total, H1): 149.455
Expected sample size (total): 178.7758
Accrual rates:

[,1] [,2] [,3]
[1,] 35.7552 35.7552 17.8776
Control event rates (H1):
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[,1] [,2] [,3]
[1,] 1 0.8 0.5
Censoring rates:

[,1] [,2] [,3]
[1,] 0 0 0
Power: 100*(1-beta)=80%
Type I error (1-sided): 100*alpha=5%
Equal randomization: ratio=1

Now compare to new version.
# NOT READY
LFPWEnew(
alpha = .05, beta = .2, hr = 2 / 3, ratio = 1,
R = 2, S = NULL, T = 4,
lambdaC = matrix(c(1, .8, .5), nrow = 1),
etaC = matrix(0, nrow = 1, ncol = 3),
etaE = matrix(0, nrow = 1, ncol = 3),
gamma = matrix(c(.4, .4, .2), nrow = 1)

)

x <- gsSurv(
alpha = .05, beta = .2, lambda = matrix(c(1, .8, .5), nrow = 1),
hr = 2 / 3, gamma = matrix(c(.4, .4, .2), nrow = 1), minfup = 2, S = NULL, T = 4, ratio = 1:3

)
x

Time to event group sequential design with HR= 0.6666667
Randomization (Exp/Control): ratio= 1 2 3
(randomization ratios shown by strata)
Asymmetric two-sided group sequential design with
80 % power and 5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 56 -0.40 0.3454 0.0297 2.79 0.0026 0.0026
2 112 0.67 0.7473 0.0578 2.29 0.0110 0.0099
3 167 1.68 0.9535 0.1125 1.68 0.0465 0.0375

Total 0.2000 0.0500
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
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assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 Total E{N}
0.0000 0.0026 0.0099 0.0343 0.0468 104.6
0.1995 0.0958 0.3382 0.3660 0.8000 130.9

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
0.0000 0.3454 0.4138 0.1940 0.9532
0.1995 0.0297 0.0578 0.1125 0.2000

T n Events HR futility HR efficacy
IA 1 1.523440 154.7076 55.61556 1.113 0.473
IA 2 2.372963 203.1029 111.23112 0.875 0.631
Final 4.000000 203.1029 166.84668 0.741 0.741
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
0-2 40.62 40.62 20.31
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-Inf 1 0.8 0.5
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
0-Inf 0 0 0

3.5.4 Stratified population, piecewise enrollment and failure

Here we have three strata (columns of lambdaC and gamma), two enrollment
rate periods (≤ 3 months and > 3 months in R; rates in rows of gamma) and
three failure rate periods (0–3, 3–6, > 6 months); rates in rows of lambdaC).
We also have the default of 3 analyses (k = 3) and default spending func-
tions. Here are the failure rate assumptions. Rows represent time periods
and columns represent strata.
lambdaC_stratified <- log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3)
lambdaC_stratified

[,1] [,2] [,3]
[1,] 0.2310491 0.11552453 0.07701635
[2,] 0.1732868 0.08664340 0.05776227
[3,] 0.1386294 0.06931472 0.04620981
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Associated with these event rates are durations of time periods for each rate.
Again, rows represent time periods and columns represent strata. Note that
this is one less row here as the final event rate above issumed to continue
indefinitely. Notice also that the durations of rates can, as here, be different
for different strata.
gamma_stratified <- matrix(c(2, 4, 8, 3, 6, 10), nrow = 2, byrow = TRUE)
gamma_stratified

[,1] [,2] [,3]
[1,] 2 4 8
[2,] 3 6 10

We begin with the case where accrual duration and minimum follow-up du-
ration are fixed and we solve for accrual rates.
x <- gsSurv(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2, byrow = TRUE),
hr = .6, S = c(3, 6), R = c(3, 3), minfup = 6, T = 30, ratio = 2, hr0 = 1.1

)
x

Time to event group sequential design with HR= 0.6
Non-inferiority design with null HR= 1.1
Randomization (Exp/Control): ratio= 2
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 45 -0.24 0.4056 0.0148 3.01 0.0013 0.0013
2 90 0.94 0.8267 0.0289 2.55 0.0054 0.0049
3 134 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis
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Theta 1 2 3 Total E{N}
0.0000 0.0013 0.0049 0.0171 0.0233 78.2
0.2897 0.1412 0.4403 0.3185 0.9000 99.1

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
0.0000 0.4056 0.4290 0.1420 0.9767
0.2897 0.0148 0.0289 0.0563 0.1000

T n Events HR futility HR efficacy
IA 1 14.30629 132.9678 44.64569 1.187 0.423
IA 2 21.89133 207.5835 89.29137 0.891 0.621
Final 30.00000 228.3269 133.93706 0.763 0.763
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
0-3 1.04 2.07 4.14
3-24 1.55 3.11 5.18
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-3 0.23 0.12 0.08
3-9 0.17 0.09 0.06
9-Inf 0.14 0.07 0.05
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0

The total number of enrollment and events at each analysis is printed above.
Following we see the enrollment and expected number of events by stratum
in rows of the following matrices.
x$eNC + x$eNE

[,1] [,2] [,3]
[1,] 20.66792 41.33584 70.96406
[2,] 32.44934 64.89867 110.23544
[3,] 35.72462 71.44923 121.15304

x$eDC + x$eDE

[,1] [,2] [,3]
[1,] 11.39809 14.59480 18.65280
[2,] 21.48863 29.53394 38.26873
[3,] 29.89590 44.55811 59.48305

We proceed to the case where accrual rate and minimum follow-up duration
are fixed and solve for accrual duration.
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x <- gsSurv(
lambdaC = log(2) / matrix(c(3, 4, 5, 6, 8, 10, 9, 12, 15), nrow = 3),
gamma = matrix(c(2, 4, 8, 3, 6, 10), nrow = 2, byrow = TRUE),
hr = .6, S = c(3, 6), R = c(3, 3), minfup = 6, T = NULL

)
x

Time to event group sequential design with HR= 0.6
Equal randomization: ratio=1
Asymmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 58 -0.24 0.4056 0.0148 3.01 0.0013 0.0013
2 115 0.94 0.8267 0.0289 2.55 0.0054 0.0049
3 173 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 Total E{N}
0.0000 0.0013 0.0049 0.0171 0.0233 100.5
0.2556 0.1412 0.4403 0.3185 0.9000 127.3

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 Total
0.0000 0.4056 0.4290 0.1420 0.9767
0.2556 0.0148 0.0289 0.0563 0.1000

T n Events HR futility HR efficacy
IA 1 10.87225 191.5728 57.37729 1.065 0.452
IA 2 16.39266 296.4606 114.75457 0.839 0.622
Final 22.95897 307.2204 172.13186 0.737 0.737
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
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0-3 2 4 8
3-16.96 3 6 10
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-3 0.23 0.12 0.08
3-9 0.17 0.09 0.06
9-Inf 0.14 0.07 0.05
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
0-3 0 0 0
3-9 0 0 0
9-Inf 0 0 0



Chapter 4

Calendar-based design

We create the function gsSurvCalendar() as an extension to gsSurv() to set
interim analysis timing at time of design to calendar times. We demonstrate
how this can be used with either information-based or calendar-based spend-
ing. The coding is quite simple in that input enrollment rates, failure rates
and dropout rates are used to compute expected events over time. Calendar
timing of all analyses is specified by the user.

Now for gsSurvCalendar() which is actually a bit simpler and more flexible
than gsSurv(). We swap in the argument calendarTime for the timing
and T arguments above in gsSurv(); here the timing (information fraction)
will be computed, while in gsSurv() the calendar times are computed. The
parameter hrbeta is used when 𝛽-spending should be based on a different
hazard ratio than specified in hr (only used when test.type is 3 or 4).
#' @param test.type
#'
#' @param alpha Type I error rate. Default is 0.025 since 1-sided testing is default.
#' @param sided 1 for 1-sided testing, 2 for 2-sided testing.
#' @param beta Type II error rate. Default is 0.10 (90% power); NULL if power is to be computed based on other input values.
#' @param astar Normally not specified. If \code{test.type=5} or \code{6}, \code{astar} specifies the total probability of crossing a lower bound at all analyses combined. This will be changed to \code{1−alpha} when default value of \code{0} is used. Since this is the expected usage, normally \code{astar} is not specified by the user.
#' @param sfu A spending function or a character string indicating a boundary type (that is, “WT” for Wang-Tsiatis bounds, “OF” for O'Brien-Fleming bounds and “Pocock” for Pocock bounds). For one-sided and symmetric two-sided testing is used to completely specify spending (\code{test.type=1, 2}), \code{sfu}. The default value is \code{sfHSD} which is a Hwang-Shih-DeCani spending function.
#' @param sfupar Real value, default is −4 which is an O'Brien-Fleming-like conservative bound when used with the default Hwang-Shih-DeCani spending function. This is a real-vector for many spending functions. The parameter sfupar specifies any parameters needed for the spending function specified by sfu; this will be ignored for spending functions (\code{sfLDOF}, \code{sfLDPocock}) or bound types (\code{“OF”, “Pocock”}) that do not require parameters.
#' @param sfl Specifies the spending function for lower boundary crossing probabilities when asymmetric, two-sided testing is performed (\code{test.type = 3, 4, 5, or 6}). Unlike the upper bound, only spending functions are used to specify the lower bound. The default value is \code{sfHSD} which is a Hwang-Shih-DeCani spending function. The parameter \code{sfl} is ignored for one-sided testing (\code{test.type=1}) or symmetric 2-sided testing (\code{test.type=2}).
#' @param sflpar Real value, default is −2, which, with the default Hwang-Shih-DeCani spending function, specifies a less conservative spending rate than the default for the upper bound.
#' @param calendarTime Vector of increasing positive numbers with calendar times of analyses. Time 0 is start of randomization.
#' @param spending Select between calendar-based spending and information-based spending.
#' @param lambdaC scalar, vector or matrix of event hazard rates for the control group; rows represent time periods while columns represent strata; a vector implies a single stratum.
#' @param hr hazard ratio (experimental/control) under the alternate hypothesis (scalar).
#' @param hr0 hazard ratio (experimental/control) under the null hypothesis (scalar).
#' @param eta scalar, vector or matrix of dropout hazard rates for the control group; rows represent time periods while columns represent strata; if entered as a scalar, rate is constant across strata and time periods; if entered as a vector, rates are constant across strata.
#' @param etaE matrix dropout hazard rates for the experimental group specified in like form as \code{eta}; if \code{NULL}, this is set equal to \code{eta}.
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#' @param gamma a scalar, vector or matrix of rates of entry by time period (rows) and strata (columns); if entered as a scalar, rate is constant across strata and time periods; if entered as a vector, rates are constant across strata.
#' @param R a scalar or vector of durations of time periods for recruitment rates specified in rows of gamma. Length is the same as number of rows in gamma. Note that when variable enrollment duration is specified (input T=NULL), the final enrollment period is extended as long as needed.
#' @param S a scalar or vector of durations of piecewise constant event rates specified in rows of lambda, eta and etaE; this is NULL if there is a single event rate per stratum (exponential failure) or length of the number of rows in lambda minus 1, otherwise.
#' @param minfup A non-negative scalar less than the maximum value in \code{calendarTime}. Enrollment will be cut off at the difference between the maximum value in \code{calendarTime} and \code{minfup}.
#' @param ratio randomization ratio of experimental treatment divided by control; normally a scalar, but may be a vector with length equal to number of strata.
#' @param r Integer value controlling grid for numerical integration as in Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger number of grid points and greater accuracy. Normally r will not be changed by the user.
#'
#' @export
gsSurvCalendar <- function(

test.type = 4, alpha = 0.025, sided = 1, beta = 0.1, astar = 0,
sfu = gsDesign::sfHSD, sfupar = -4,
sfl = gsDesign::sfHSD, sflpar = -2,
calendarTime = c(12, 24, 36),
spending = c("information", "calendar"),
lambdaC = log(2) / 6, hr = .6, hr0 = 1, eta = 0, etaE = NULL,
gamma = 1, R = 12, S = NULL, minfup = 18, ratio = 1,
r = 18 # , tol = .Machine$double.eps^0.25
) {

x <- nSurv(
lambdaC = lambdaC, hr = hr, hr0 = hr0, eta = eta, etaE = etaE,
gamma = gamma, R = R, S = S, T = max(calendarTime),
minfup = minfup, ratio = ratio,
alpha = alpha, beta = beta, sided = sided # , tol = tol

)

# Get interim expected event counts and sample size based on
# input gamma, eta, lambdaC, R, S, minfup

eDC <- NULL
eDE <- NULL
eNC <- NULL
eNE <- NULL
T <- NULL
k <- length(calendarTime)
for (i in 1:k) {
xx <- nEventsIA(tIA = calendarTime[i], x = x, simple = FALSE)
eDC <- rbind(eDC, xx$eDC)
eDE <- rbind(eDE, xx$eDE)
eNC <- rbind(eNC, xx$eNC)
eNE <- rbind(eNE, xx$eNE)

}
timing <- rowSums(eDC) + rowSums(eNC)
timing <- timing / max(timing)
# if calendar spending, set usTime, lsTime
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if (spending[1] == "calendar") {
lsTime <- calendarTime / max(calendarTime)

} else {
lsTime <- NULL

}
usTime <- lsTime

# Now inflate events to get targeted power
y <- gsDesign::gsDesign(
k = k, test.type = test.type, alpha = alpha / sided,
beta = beta, astar = astar, n.fix = x$d, timing = timing,
sfu = sfu, sfupar = sfupar, sfl = sfl, sflpar = sflpar, # tol = tol,
delta1 = log(hr), delta0 = log(hr0),
usTime = usTime, lsTime = lsTime

)
y$hr <- hr
y$hr0 <- hr0
y$R <- x$R
y$S <- x$S
y$minfup <- x$minfup
# Inflate fixed design enrollment to get targeted events
inflate <- max(y$n.I) / x$d
y$gamma <- x$gamma * inflate
y$eDC <- inflate * eDC
y$eDE <- inflate * eDE
y$eNC <- inflate * eNC
y$eNE <- inflate * eNE
y$ratio <- ratio
y$lambdaC <- x$lambdaC
y$etaC <- x$etaC
y$etaE <- x$etaE
y$variable <- x$variable
# y$tol <- tol
y$T <- calendarTime
class(y) <- c("gsSurv", "gsDesign")

nameR <- nameperiod(cumsum(y$R))
stratnames <- paste("Stratum", 1:ncol(y$lambdaC))
if (is.null(y$S)) {
nameS <- "0-Inf"

} else {
nameS <- nameperiod(cumsum(c(y$S, Inf)))

}
rownames(y$lambdaC) <- nameS
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colnames(y$lambdaC) <- stratnames
rownames(y$etaC) <- nameS
colnames(y$etaC) <- stratnames
rownames(y$etaE) <- nameS
colnames(y$etaE) <- stratnames
rownames(y$gamma) <- nameR
colnames(y$gamma) <- stratnames
return(y)

}

Example: default arguments
xxx <- gsSurvCalendar()
gsDesign::gsBoundSummary(xxx)

Analysis Value Efficacy Futility
IA 1: 50% Z 2.7508 0.4687

N: 132 p (1-sided) 0.0030 0.3197
Events: 88 ~HR at bound 0.5551 0.9046
Month: 12 P(Cross) if HR=1 0.0030 0.6803

P(Cross) if HR=0.6 0.3621 0.0268
IA 2: 92% Z 2.1282 1.8018

N: 198 p (1-sided) 0.0167 0.0358
Events: 161 ~HR at bound 0.7148 0.7526
Month: 24 P(Cross) if HR=1 0.0175 0.9654

P(Cross) if HR=0.6 0.8661 0.0827
Final Z 2.0453 2.0453

N: 198 p (1-sided) 0.0204 0.0204
Events: 175 ~HR at bound 0.7339 0.7339
Month: 36 P(Cross) if HR=1 0.0222 0.9778

P(Cross) if HR=0.6 0.9000 0.1000

We check this with a call to gsSurv() that should give an identical design.
yyy <- gsSurv(
k = 3, test.type = 4, alpha = 0.025, sided = 1, beta = 0.1, astar = 0,
sfu = gsDesign::sfHSD, sfupar = -4,
sfl = gsDesign::sfHSD, sflpar = -2,
timing = xxx$timing,
T = max(xxx$T),
lambdaC = log(2) / 6, hr = .6, hr0 = 1, eta = 0, etaE = NULL,
gamma = 1, R = 12, S = NULL, minfup = 18, ratio = 1,
r = 18, tol = .Machine$double.eps^0.25

)
gsDesign::gsBoundSummary(yyy)

Analysis Value Efficacy Futility
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IA 1: 50% Z 2.7508 0.4686
N: 182 p (1-sided) 0.0030 0.3197

Events: 88 ~HR at bound 0.5550 0.9046
Month: 17 P(Cross) if HR=1 0.0030 0.6803

P(Cross) if HR=0.6 0.3621 0.0268
IA 2: 92% Z 2.1282 1.8017

N: 198 p (1-sided) 0.0167 0.0358
Events: 161 ~HR at bound 0.7148 0.7526
Month: 30 P(Cross) if HR=1 0.0175 0.9653

P(Cross) if HR=0.6 0.8661 0.0827
Final Z 2.0453 2.0453

N: 198 p (1-sided) 0.0204 0.0204
Events: 175 ~HR at bound 0.7339 0.7339
Month: 36 P(Cross) if HR=1 0.0222 0.9778

P(Cross) if HR=0.6 0.9000 0.1000

Example: default arguments, but information fraction

Note that calendar fraction spending below gives much more conservative
interim bounds than information fraction spending above. This behavior is
due to event accumulation slowing down as the trial proceeds; this is not
always the case.
gsDesign::gsBoundSummary(gsSurvCalendar(spending = "calendar"))

Analysis Value Efficacy Futility
IA 1: 50% Z 3.0107 0.1378

N: 122 p (1-sided) 0.0013 0.4452
Events: 82 ~HR at bound 0.5126 0.9699
Month: 12 P(Cross) if HR=1 0.0013 0.5548

P(Cross) if HR=0.6 0.2425 0.0148
IA 2: 92% Z 2.5422 1.3488

N: 184 p (1-sided) 0.0055 0.0887
Events: 150 ~HR at bound 0.6597 0.8020
Month: 24 P(Cross) if HR=1 0.0062 0.9156

P(Cross) if HR=0.6 0.7278 0.0437
Final Z 1.9682 1.9682

N: 184 p (1-sided) 0.0245 0.0245
Events: 163 ~HR at bound 0.7344 0.7344
Month: 36 P(Cross) if HR=1 0.0244 0.9756

P(Cross) if HR=0.6 0.9000 0.1000

Example: computing power rather than sample size

Here we set beta = NULL so that gsSurvCalendar() will compuute power
rather than sample size. This needs additional testing. Right now it does
not work as gsDesign() will not compute power with the given call. This
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can possibly be fixed by using the maxn.IPlan argument when in the
gsSurvCalendar() code.
gsDesign::gsBoundSummary(gsSurvCalendar(beta = NULL))

Example: stratified design

Stratified designs still need fixing of weights for strata. However,
gsSurvCalendar() will generate an answer with inappropriate weights
until that time.
gsSurvCalendar(
alpha = .05, beta = .2, hr = 2 / 3, ratio = 1,
R = 2, S = NULL, calendarTime = c(2, 4),
minfup = 2,
lambdaC = matrix(c(1, .8, .5), nrow = 1),
eta = matrix(0, nrow = 1, ncol = 3),
etaE = matrix(0, nrow = 1, ncol = 3),
gamma = matrix(c(.4, .4, .2), nrow = 1)

)

Time to event group sequential design with HR= 0.6666667
Equal randomization: ratio=1
Asymmetric two-sided group sequential design with
80 % power and 5 % Type I Error.
Upper bound spending computations assume
trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----
Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 128 1.13 0.8703 0.122 2.02 0.0214 0.0214
2 160 1.69 0.9544 0.078 1.69 0.0456 0.0286

Total 0.2000 0.0500
+ lower bound beta spending (under H1):
Hwang-Shih-DeCani spending function with gamma = -2.
++ alpha spending:
Hwang-Shih-DeCani spending function with gamma = -4.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 Total E{N}
0.0000 0.0214 0.0248 0.0462 130.6
0.2034 0.6056 0.1944 0.8000 136.0
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Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 Total
0.0000 0.8703 0.0835 0.9538
0.2034 0.1220 0.0780 0.2000

T n Events HR futility HR efficacy
IA 1 2 191.3497 127.0654 0.819 0.698
Final 4 191.3497 159.9666 0.766 0.766
Accrual rates:

Stratum 1 Stratum 2 Stratum 3
0-2 38.27 38.27 19.13
Control event rates (H1):

Stratum 1 Stratum 2 Stratum 3
0-Inf 1 0.8 0.5
Censoring rates:

Stratum 1 Stratum 2 Stratum 3
0-Inf 0 0 0





References

D. Bernstein and S. Lagakos. Sample size and power determination for strat-
ified clinical trials. Journal of Statistical Computation and Simulation, 8:
65–73, 1978.

Kyungmann Kim and Anastasios A. Tsiatis. Study duration for clinical trials
with survival response and early stopping rule. Biometrics, 46:81–92, 1990.

John M. Lachin and Mary A. Foulkes. Evaluation of sample size and power
for analyses of survival with allowance for nonuniform patient entry, losses
to follow-up, noncompliance, and stratification. Biometrics, 42:507–519,
1986.

101




	Welcome
	Overview
	Ongoing and planned initiatives

	Preface
	Summary of updates

	Computing expected number of events over time
	General formulation
	Piecewise failure and enrollment distibutions
	General definitions
	Definition of a piecewise exponential failure time
	Exponential failure and censoring
	Piecewise constant enrollment
	Expected number of events
	Testing event count calculations
	R routine for computing expected number of events for a single stratum
	The eEvents1 source code
	Extending expected number of events calculations to a stratified population
	eEvents source code
	Print function for eEvents()
	Example calculations in R
	Literature example: stratified with exponential failure, no dropouts


	Sample size for a fixed design
	Notation
	The basic equation
	Asymptotic approximation for power and sample size
	A period naming utility
	Fixed enrollment and study duration
	LFPWE source
	Experimental version
	Examples

	Fixed enrollment rate methods
	KTZ source code and discussion
	KT source code
	Checks
	Examples

	nSurv: the general fixed design sample size and power function
	Source code
	Input variables
	Output structure

	Documentation and primary examples for fixed design sample size and power
	Derive accrual rates
	Derive accrual and study duration
	Derive follow-up duration
	Derive power
	Examples with multiple strata, enrollment rates and failure rates


	Sample size and power for a group sequential design
	Inflating the expected number of events
	Source code for inflating the expected number of events
	Enrollment at interim analysis
	The general group sequential design approach
	Examples
	Simple
	Piecewise enrollment and failure rates
	Stratified population
	Stratified population, piecewise enrollment and failure


	Calendar-based design
	References

