
Keaven M. Anderson

gsDesign Technical Manual

Placeholder Name

gsDesign Technical Manual

© Placeholder Name, Inc.

ISBN-1234567891234

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla et elementum
libero. In hac habitasse platea dictumst. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia Curae; Donec sed odio dui.
Nullam quis risus eget urna mollis ornare vel eu leo. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Curabitur blandit tempus porttitor. Integer posuere erat a ante venenatis
dapibus posuere velit aliquet.

Placeholder for dedication text

Table of contents

Welcome . 5

Preface . 7
Version history . 8

1 Introduction . 9
1.1 Overview . 9
1.2 Quick start: installation and online help 11
1.3 Package testing . 11
1.4 The primary routines in the gsDesign package 12
1.5 The CAPTURE trial: binary endpoint example 13
1.6 A time-to-event endpoint in a cancer trial 15
1.7 A non-inferiority study for a new drug . 17
1.8 A diabetes outcomes trial example . 17

2 Group sequential design theory and notation in brief 21
2.1 Distributional assumptions . 21
2.2 Hypotheses and testing . 23
2.3 Boundary crossing probabilities: gsProbability() 23

2.3.1 One-sided testing . 23
2.3.2 Two-sided testing . 28

2.4 Expected sample size . 32

3 Continuous and integer sample size . 35

4 Applying the default group sequential design 39
4.1 Default parameters . 39
4.2 Sample size ratio for a group sequential design compared to

a fixed design. 40
4.3 The default call to gsDesign() . 41
4.4 Applying the default design to the CAPTURE example 44

1

2 Table of contents

4.4.1 Simulation of a binomial design . 47
4.4.2 Applying the default design to the noninferiority

example . 48
4.5 Applying the default design to the cancer trial example 49
4.6 Further properties of designs . 52

5 Time-to-event sample size derivation . 57

6 Deriving group sequential designs . 61
6.1 Boundary derivation using boundary crossing probabilities . . . 61

6.1.1 Types of error probabilities used: test.type 61
6.1.2 Specifying boundary crossing probabilities in

gsDesign() . 63
6.2 Deriving group sequential designs using boundary families . . . 66

7 Other gsDesign() parameters . 73
7.1 Setting Type I error and power . 73
7.2 Number and timing of analyses . 73
7.3 Standardized treatment effect: delta . 75

7.3.1 Normally distributed data . 75
7.3.2 Time to event data . 76

8 Spending functions . 79
8.1 Spending function definitions . 79
8.2 Spending function families . 80
8.3 Spending function basics . 81
8.4 Resetting timing of analyses . 86
8.5 Advanced spending function details . 88

8.5.1 Spending functions as arguments 88
8.5.2 Investigational spending functions 92
8.5.3 Optimized spending functions . 95
8.5.4 Writing code for a new spending function 99

9 Analyzing group sequential trials . 103
9.1 The CAPTURE data . 103
9.2 Testing significance of the CAPTURE data 104
9.3 Adding an interim analysis to a design . 107
9.4 Stage-wise 𝑝-values . 109
9.5 Repeated confidence intervals . 110
9.6 Subdensity functions . 111

10 Conditional power and B-values . 113
10.1 Z-values, B-values and S-values . 113
10.2 Incremental formulation . 114
10.3 Simple conditional power and conditional error 115

10.3.1 Simple conditional power for the CAPTURE trial 115

Table of contents 3

10.4 Conditional power and conditional error 117
10.4.1 Application to the CAPTURE trial 119

11 Bayesian design properties . 121
11.1 Normal densities . 122
11.2 The posterior distribution for 𝜃 . 127
11.3 Bayes credible intervals . 132
11.4 Predictive power . 133
11.5 Predictive distribution for the normal case 134
11.6 Prediction intervals . 135
11.7 Probability of success . 137
11.8 Updating probability of success based on blinded results 142
11.9 Calculating the value of a clinical trial design 143
11.10Optimization example: selecting a futility bound. 145

References . 149

Welcome

Welcome to the gsDesign Technical Manual by Keaven M. Anderson. You
can view the HTML version at https://keaven.github.io/gsd-tech-manual/.

The gsDesign package supports group sequential clinical trial design. While
there is a strong focus on designs using 𝛼- and 𝛽-spending functions, Wang-
Tsiatis designs, including O’Brien-Fleming and Pocock designs, are also avail-
able. The ability to design with non-binding futility rules is an important fea-
ture to control Type I error in a manner acceptable to regulatory authorities.

The book was written by Keaven M. Anderson. The translation from the
original LaTeX version to bookdown was largely done by Fang Xiao, with
help from Yilong Zhang and Nan Xiao. Later, Nan Xiao migrated the content
from bookdown to Quarto.

5

https://keaven.github.io/gsd-tech-manual/

Preface

The gsDesign package supports group sequential clinical trial design. While
there is a strong focus on designs using 𝛼- and 𝛽-spending functions, Wang-
Tsiatis designs, including O’Brien-Fleming and Pocock designs, are also avail-
able. The ability to design with non-binding futility rules is an important fea-
ture to control Type I error in a manner acceptable to regulatory authorities.

The routines are designed to provide simple access to commonly used designs
using default arguments. Standard, published spending functions are sup-
ported as well as the ability to write custom spending functions. A gsDesign
class is defined and returned by the gsDesign() function. A plot function
for this class provides a wide variety of plots: boundaries, power, estimated
treatment effect at boundaries, conditional power at boundaries, spending
function plots, expected sample size plot, and B-values at boundaries. Using
function calls to access the package routines provides a powerful capability to
derive designs or output formatting that could not be anticipated through a
GUI interface. However, basic functionality is provided with the Shiny inter-
face at https://rinpharma.shinyapps.io/gsdesign/. This enables the user to
easily create designs with features they desire, such as designs with minimum
expected sample size.

In addition to straightforward group sequential design, the gsDesign pack-
age provides tools to effectively adapt clinical trials during execution. First,
the spending function approach to design allows altering timing of analyses
during the course of the trial. Information-based timing of analyses allows
adaptation of sample size or number of events to ensure adequate power for
a trial. Finally, gsDesign provides a routine that enable design adaptation
using conditional error and conditional power.

In summary, the intent of the gsDesign package is to easily create, fully
characterize, and even optimize routine group sequential trial designs, as
well as to provide a tool to derive and evaluate innovative designs.

7

https://rinpharma.shinyapps.io/gsdesign/

8 Preface

Version history

Version 2.2 adds high-quality plots using the ggplot2 package and additional
calculations available for Bayesian calculation such as predictive power and
computing probability of success by averaging power over a prior distribution
for treatment effect. A GUI interface is also available through the gsDesign-
Explorer R package that is available separately (not on CRAN); a separate
manual is also available.

Version 2.3 provides boundary summary functions gsBoundSummary() and
xtable.gsDesign(). The provide many summary values for design bound-
aries for on-screen (gsBoundSummary()) and LaTeX (xtable.gsDesign())
output. Fixes for plotting for one-sided designs are also made in this version.

Version 2.4 adds functions and plots summarizing treatment effect approxi-
mations based on interim Z-statistics.

Version 2.5 adds posterior distribution computation for the parameter of
interest, 𝜃, as well as prediction intervals.

Upper Gwynedd, Pennsylvania Keaven M. Anderson

Chapter 1

Introduction

1.1 Overview

The gsDesign package is intended to provide a flexible set of tools for design-
ing and analyzing group sequential trials. There are other adaptive methods
that can also be supported using this underlying toolset. This manual is in-
tended as an introduction to gsDesign. Many users may just want to apply ba-
sic, standard design methods. Others will be interested in applying the toolset
to very ambitious adaptive designs. We try to give some orientation to each
of these sets of users, and to distinguish between the material needed by each.
For those looking for a particularly simple approach to using gsDesign, a web-
based Shiny app is available at https://rinpharma.shinyapps.io/gsdesign/.

The remainder of this overview provides a quick review of topics covered in
this manual. The introduction continues with some basic theory behind group
sequential design to provide background for the routines. There is no attempt
to fully develop the theory for statistical tests or for group sequential design
in general since many statisticians will already be familiar with these and
there are excellent texts available such as Jennison and Turnbull [2000] and
Proschan et al. [2006].

The introduction continues with a simple outline of the main routines pro-
vided in the gsDesign package followed by motivational examples that will
be used later in the manual. Basic sample size calculations for 2-arm bino-
mial outcome trials using the nBinomial() function and 2-arm time-to-event
endpoint trials using nSurvival() are shown, including an example of a non-
inferiority trial. Both superiority and noninferiority trials are considered.

Further material is arranged by topic in subsequent sections. Chapter 2 pro-
vides a minimal background in asymptotic probability theory for group se-
quential testing. The basic calculations involve computing boundary crossing
probabilities for correlated normal random variables. We demonstrate the

9

https://rinpharma.shinyapps.io/gsdesign/

10 1 Introduction

gsProbability() routine to compute boundary crossing probabilities and
expected sample size for group sequential designs.

Setting boundaries for group sequential designs, particularly using spending
functions is the main point of emphasis in the gsDesign package. Section 4.1
through Section 8.5 of the manual present the design and evaluation of designs
for group sequential trials using the gsDesign() routine.

Default parameters for gsDesign() are demonstrated for the motivational ex-
amples in Section 4.1. Basic computations for group sequential designs using
boundary families and error spending are provided in Chapter 6. The pri-
mary discussion of Wang-Tsiatis boundary families [Wang and Tsiatis, 1987]
(e.g., O’Brien-Fleming O’Brien and Fleming [1979] and Pocock Pocock [1977]
designs) is provided here in Section 6.2.

Next, we proceed to a short discussion in Chapter 7 of gsDesign() param-
eters for setting Type I and II error rates and the number and timing of
analyses. The section also explains how to use a measure of treatment effect
to size trials, with specific discussion of event-based computations for trials
with time-to-event analyses.

The basics of standard spending functions are provided in Chapter 8. Sub-
sections defining spending functions and spending function families are fol-
lowed by a description of how to use built-in standard Hwang-Shih-DeCani
Hwang et al. [1990] and power Kim and Demets [1987] spending functions in
gsDesign(). Section 8.4 shows how to reset timing of interim analyses using
gsDesign().

The final section on spending functions is Section 8.5 which presents details
of how spending functions are defined for gsDesign() and other advanced
topics that will probably not be needed by many users. The section will be of
use to those interested in investigational spending functions and optimized
spending function choice. Spending function families by Anderson and Clark
[2010] providing additional flexibility to standard one-parameter spending
functions are detailed as part of a comprehensive list of built-in spending
functions. This is followed by examples of how to derive optimal designs and
how to implement new spending functions.

Next comes Section Chapter 9 on the basic analysis of group sequential trials.
This includes computing stagewise and repeated 𝑝-values as well as repeated
confidence intervals.

Conditional power and B-values are presented in Chapter 10. These are meth-
ods used for evaluating interim trends in a group sequential design, but may
also be used to adapt a trial design at an interim analysis using the meth-
ods of Müller and Schäfer [2001]. The routine gsCP() provides the basis for
applying these adaptive methods.

1.3 Package testing 11

We end with a discussion of Bayesian computations in Chapter 11. The gs-
Design package can quite simply be used with decision theoretic methods to
derive optimal designs. We also apply Bayesian computations to update the
probability of success a trial based on knowing a bound has not been crossed,
but without knowledge of unblinded treatment results.

Future extensions of the manual could further discuss implementation of
information-based designs and additional adaptive design topics.

1.2 Quick start: installation and online help

This brief section is meant to get you up and going. The package is most
easily downloaded and installed in R from the CRAN website using:
install.packages("gsDesign")

Since the package is released on a regular basis, there is usually little value
installing the most recent development version from GitHub using:
remotes::install_github("keaven/gsDesign")

After installation, attach the gsDesign package with:
library(gsDesign)

Online help can be obtained by entering the following on the command line:
help(gsDesign)

There are many help topics covered there which should be sufficient infor-
mation to keep you from needing to use this document for day-to-day use
or if you just generally prefer not using a manual. The same information
plus additional vignettes providing more long-form description of usage are
at https://keaven.github.io/gsDesign/.

1.3 Package testing

While there are no guarantees provided, we note that extensive unit testing
has been written to ensure package quality. At the time of this writing, code
coverage is at 82%.

https://keaven.github.io/gsDesign/

12 1 Introduction

1.4 The primary routines in the gsDesign package

As an overview to the R package, there is a handful of R functions that
provide basic computations related to designing and evaluating many group
sequential clinical trials:

1. The gsDesign() function provides sample size and boundaries for a group
sequential design based on treatment effect, spending functions for bound-
ary crossing probabilities, and relative timing of each analysis. Standard
and user-specified spending functions may be used. In addition to spending
function designs, the family of Wang-Tsiatis designs—including O’Brien-
Fleming and Pocock designs—are also available.

2. The gsSurv() function extends the gsDesign() function to design group
sequential trials for time-to-event endpoints.

3. The gsProbability() function computes boundary crossing probabilities
and expected sample size of a design for arbitrary user-specified treatment
effects, bounds, and interim analysis sample sizes.

4. The gsCP() function computes the conditional probability of future bound-
ary crossing given a result at an interim analysis. There are related func-
tions to support other conditional and predictive power calculations that
can be used for interim descriptions of or adaptive design. For instance, the
ssrCP() function supports sample size re-estimation directly for 2-stage
trials.

We note that the full reference of all functions is organized by topic and
easily available at the package documentation site (https://keaven.github.
io/gsDesign/) in the reference section.

The package design strategy should make its tools useful both as an ev-
eryday tool for simple group sequential design as well as a research tool
for a wide variety of group sequential design problems. Both print() and
plot() functions are available for both gsDesign() and gsProbability().
The gsBoundSummary() function provides a formatted table for incorpora-
tion in a protocol; gsBoundSummary() provides the capability to summarize
many boundary characteristics, including conditional power, treatment effect
approximations and B-values. This is particularly helpful with the gt package
to publish tables.

The most extensive set of supportive routines enables design and evaluation
of binomial endpoint trials and time-to-event endpoint trials. For binomial
endpoints, we use the Farrington and Manning [1990] method for sample size
estimation in nBinomial() and the corresponding Miettinen and Nurminen
[1985] method for testing, confidence intervals, and simulation. We also imple-
ment the Lachin and Foulkes [1986] for sample size for survival studies. The
examples we present apply these methods to group sequential trial design for
binomial and time-to-event endpoints.

https://keaven.github.io/gsDesign/
https://keaven.github.io/gsDesign/

1.5 The CAPTURE trial: binary endpoint example 13

Functions are set up to be called directly from the R command line. Default
arguments and output for gsDesign() and gsSurv() are included to make ini-
tial use simple. Sufficient options are available, however, to make the routine
very flexible. Guided use not requiring looking up function arguments is pro-
vided by the Shiny interface at https://rinpharma.shinyapps.io/gsdesign/.

Simple examples provide the best overall motivation for group sequential de-
sign. This manual does not attempt to comprehensively delineate all that the
gsDesign package may accomplish. The intent is to include enough detail to
demonstrate a variety of approaches to group sequential design that provide
the user with a useful tool and the understanding of ways that it may be
applied and extended. Examples that will reappear throughout the manual
are introduced here.

1.5 The CAPTURE trial: binary endpoint example

The CAPTURE Investigators [1997] presented the results of a randomized
trial in patients with unstable angina who required treatment with angio-
plasty, an invasive procedure where a balloon is inflated in one or more coro-
nary arteries to reduce blockages. In the process of opening a coronary artery,
the balloon can injure the artery which may lead to thrombotic complications.
Standard treatment at the time the trial was run included treatment with
heparin and aspirin before and during angioplasty to reduce the thrombotic
complications such as the primary composite endpoint comprising myocardial
infarction, recurrent urgent coronary intervention and death over the course
of 30 days. This trial compared this standard therapy to the same therapy
plus abciximab, a platelet inhibitor. While the original primary analysis used
a logrank statistic to compare treatment groups, for this presentation we will
consider the outcome binary. Approximately 15% of patients in the control
group were expected to experience a primary endpoint, but rates from 7.5%
to 20% could not be ruled out. There was an expectation that the experimen-
tal treatment would reduce incidence of the primary endpoint by at least 1/3,
but possibly by as much as 1/2 or 2/3. Since a 1/3 reduction was felt to be
conservative, the trial was planned to have 80% power. Given these various
possibilities, the desirable sample size for a trial with a fixed design had over
a 10-fold range from 202 to 2942; see Table below.
n <- NULL
p <- c(0.075, 0.1, 0.15, 0.2)
for (p1 in p) {
n <- rbind(
n,
ceiling(
nBinomial(

https://rinpharma.shinyapps.io/gsdesign/

14 1 Introduction

p1 = p1,
p2 = p1 * c(2 / 3, 1 / 2, 1 / 3),
beta = 0.2

) / 2
) * 2

)
}
tb <- data.frame(p * 100, n)
names(tb) <- c(
"Control rate (%)",
"1/3 reduction",
"1/2 reduction",
"2/3 reduction"

)
tb %>%
kable(
caption = paste0(
"Fixed design sample size possibilities ",
"for the CAPTURE trial by control group event rate ",
"and relative treatment effect."

)
) %>%
kable_styling()

Table 1.1: Fixed design sample size possibilities for the CAPTURE trial by
control group event rate and relative treatment effect.

Control rate (%) 1/3 reduction 1/2 reduction 2/3 reduction
7.5 2942 1184 596

10.0 2158 870 438
15.0 1372 556 282
20.0 980 398 202

The third line in the above table can be generated using the call
nBinomial(
p1 = 0.15,
p2 = 0.15 * c(2 / 3, 1 / 2, 1 / 3),
beta = 0.2

)
#> [1] 1371.1937 554.9067 280.1902

and rounding the results up to the nearest even number. The function
nBinomial() in the gsDesign package is designed to be a flexible tool for

1.6 A time-to-event endpoint in a cancer trial 15

deriving sample size for two-arm binomial trials for both superiority and
non-inferiority. Type at the command prompt to see background on sample
size, simulation, testing and confidence interval routines for fixed (non-group
sequential) binomial trials. These routines will be used with this and other
examples throughout the manual.

1.6 A time-to-event endpoint in a cancer trial

As a second example we consider comparing a new treatment to a standard
treatment for a cancer trial. Lachin and Foulkes [Lachin and Foulkes, 1986]
provide a method of computing sample size assuming the following distribu-
tions are known:

• The time to a primary endpoint in each treatment group.
• The time until dropout in each group.
• Enrollment over time.

Statistical testing is performed using the logrank test statistic. The methods
allow different assumptions in different strata. Enrollment time and total
study duration are assumed fixed, and the sample size and number of events
required during those periods, respectively, to achieve a desired power and
Type I error are computed. Here we apply the simplest form of this method,
assuming an exponential distribution in each case with no stratification. The
routine can be used to derive the sample size and number of events required.
This routine works with failure rates rather than distribution medians or
dropout rates per year. An exponential distribution with failure rate 𝜆 has
cumulative probability of failure at or before time 𝑡 of

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡.

If the cumulative failure rate is known to be 𝑝0 at time 𝑡0, then the value of
𝜆 is

𝜆 = − ln(1 − 𝑝0)/𝑡0.

We assume for the trial of interest that the primary endpoint is the time
from randomization until the first of disease progression or death (progression
free survival or PFS). Patients on the standard treatment are assumed to
have an exponential failure rate with a median PFS of 6 months, yielding
𝜆𝐶 = ln(2)/6 = 0.1155 with 𝑡 measured in months. The trial is to be powered
at 90% to detect a reduction in the hazard rate for PFS of 30% (HR = 0.7)
in the experimental group compared to standard treatment. This yields an
experimental group failure rate of 0.7×𝜆𝐶 = 0.0809. Patients are assumed to

16 1 Introduction

drop out at a rate of 5% per year of follow-up which implies an exponential
rate 𝜂 = − ln(0.95)/12 = 0.00427. Enrollment is assumed to be uniform over
30 months with patients followed for a minimum of 6 months, yielding a total
study time of 36 months.

The function is nSurv() computes sample size using the Lachin and Foulkes
[Lachin and Foulkes, 1986] method:
x <- nSurv(
lambdaC = log(2) / 6,
alpha = 0.025,
beta = 0.1,
eta = -log(0.95) / 12,
hr = 0.7,
T = 36,
minfup = 6

)

This returns a total sample size x$n of 416.2635478 which is a continuous
number. Generally, you will want to round up to an even number with
n <- ceiling(x$n / 2) * 2
n

The target number of events to power the trial is rounded up to the nearest
integer:
events <- ceiling(x$d)
events
#> [1] 330

Thus, 2942, 2158, 1372, 980, 1184, 870, 556, 398, 596, 438, 282, 202 patients
and 330 events are sufficient to obtain 90% power with a 2.5% one-sided Type
I error. A major issue with this type of study is that many experimental
cancer therapies have toxic side-effects and, at the same time, do not provide
benefit. For such drugs, it is desirable to minimize the number of patients
exposed to the experimental regimen and further to minimize the duration
of exposure for those who are exposed. Thus, it is highly desirable to do an
early evaluation of data to stop the trial if no treatment benefit is emerging
during the course of the trial. Such an evaluation must be carefully planned
to 1) avoid an unplanned impact on the power of the study, and 2) to allow
a realistic assessment of the emerging treatment effect.

1.8 A diabetes outcomes trial example 17

1.7 A non-inferiority study for a new drug

The nBinomial() function presented above was specifically designed to work
for noninferiority trial design as well as superiority designs. We consider a
new treatment that is to be compared to a standard that has a successful
treatment rate of 67.7%. An absolute margin of 7% is considered an accept-
able noninferiority margin. The trial is to be powered at 90% with 2.5% Type
I error (one-sided) using methods presented by Farrington and Manning [Far-
rington and Manning, 1990]. The function call nBinomial(p1 = 0.677, p2
= 0.677, delta0 = 0.07) shows that a fixed sample size of 1874 is adequate
for this purpose. There are some concerns about these assumptions, however.
First, the control group event rate may be incorrect. As the following code
using event rates from 0.55 to 0.75 demonstrates, the required sample size
may range from 1600 to over 2100.
p <- c(0.55, 0.6, 0.65, 0.7, 0.75)
ceiling(nBinomial(p1 = p, p2 = p, delta0 = 0.07))
#> [1] 2117 2054 1948 1800 1611

More importantly, if the experimental group therapy does not work quite as
well as control, there is a considerable dropoff in power to demonstrate non-
inferiority. Thus, there may be value in planning an interim futility analysis
to stop the trial if the success rate with experimental therapy is trending
substantially worse than with control.

1.8 A diabetes outcomes trial example

Current regulatory standards for chronic therapies of diabetes require ensur-
ing that a new drug in a treatment class does not have substantially inferior
cardiovascular outcomes compared to an approved treatment or treatments
[Center for Drug Evaluation and Research, 2008]. While we do not claim the
designs for this example presented here would be acceptable to regulators,
the specifics of the guidance provide a nice background for the use of the
gsDesign package to derive group sequential designs that fit a given problem.
The initial reason for presenting this example is that there is likely to be a
genuine public health interest in showing any of the following for the two
treatment arms compared:

• The two treatment arms are similar (equivalence).
• One arm is similar to or better than the other (non-inferiority).
• Either arm is superior to the other (2-sided testing of no difference).

The example is somewhat simplified here. We assume patients with diabetes
have a risk of a cardiovascular event of about 1.5% per year and a 15%

18 1 Introduction

dropout rate per year. If each arm has the same cardiovascular risk as the
other, we would like to have 90% power to rule out a hazard ratio of 1.3 in
either direction. Type I error if one arm has an elevated hazard ratio of 1.3
compared to the other should be 2.5% if one-sided. The trial is to enroll in
2 years and have a minimum follow-up of 4 years, leading to a total study
time of 6 years. The sample size routine nSurv() is set up to handle this by
making the null hypothesis a hazard ratio of 1.3 (hr0 = 1.3 below) and the
alternate hypothesis a hazard ratio of 1 (hr = 1 below) to reflect equivalence.
Our assumed rate for the both groups of 𝜆 = 𝜆 = − ln(1 − 0.015) under the
alternate hypothesis is what we want to drive the sample size.
x <- nSurv(
lambdaC = -log(1 - 0.015),
hr0 = 1.3,
hr = 1,
eta = -log(0.85),
alpha = 0.025,
beta = 0.1,
T = 6,
minfup = 4

)
n <- ceiling(x$n / 2) * 2
d <- ceiling(x$d)
cat(paste("Sample size:", n, "Events:", d, "\n"))
#> Sample size: 12362 Events: 617

We note that the power for this sample size has been verified by simulation.
This can be done with the simtrial package as follows; the numbers are not
executed here. This verification uses the Schoenfeld approximation for the
variance since the simtrial::simfix() function was not set up to save Cox
model standard errors. One-thousand simulations estimated power at 90.7%
when the planned minimum of 4 years of follow-up was obtained.
library(simtrial)
library(dplyr)

xx <- simfix(
nsim = 1000,
sampleSize = 12362,
targetEvents = 617,
totalDuration = 6,
enrollRates = tibble::tibble(
duration = 2,
rate = 12362 / 2

),
failRates = tibble::tibble(

1.8 A diabetes outcomes trial example 19

Stratum = "All",
duration = 6,
failRate = -log(1 - 0.015),
hr = 1,
dropoutRate = -log(0.85)

),
timingType = 3

)
xx %>%
mutate(se = sqrt(4 / Events)) %>%
summarize(
Events = mean(Events),
Duration = mean(Duration),
Power = mean(lnhr + qnorm(0.975) * se < log(1.3))

)
#> Events Duration Power
#> 617.53 6.000395 0.907

Generally, a confidence interval for the hazard ratio of experimental to control
is used to express treatment differences at the end of this type of trial. A con-
fidence interval will rule out the specified treatment differences consistently
with testing if, for example, the same proportional hazards regression model
is used for both the a Wald test and the corresponding confidence interval.
The terminology of “control” and “experimental” is generally inappropriate
when both therapies are approved. However, for this example it is generally
the case that a new therapy is being compared to an established one and
there may be some asymmetry when considering the direction of inference.
Various questions arise concerning early stopping in a trial of this nature:

• While it would be desirable to stop early if the new therapy has a signif-
icantly lower cardiovascular event rate, a minimum amount of follow-up
may be valuable to ensure longer-term safety and general acceptance of
the results.

• If a trend emerges in favor of the experimental treatment, it will likely be
possible to demonstrate non-inferiority prior to being able to demonstrate
superiority. If the trial remains blinded until superiority is demonstrated
or until the final planned analysis, full acceptance of a useful new therapy
may be delayed. As noted above, the value of long-term safety data may
be more important than an early stop based on “short-term” endpoint.

• From a sponsor’s standpoint, it may be desirable to stop the trial if it
becomes futile to demonstrate the experimental therapy is non-inferior to
control; that is, there is an interim trend favoring control. However, if
both treatment groups represent marketed products then from a public
health standpoint it may be desirable to continue the trial to demonstrate
a statistically significant advantage for the control treatment.

Chapter 2

Group sequential design theory and
notation in brief

We begin by defining the distribution theory for the joint set of statistics
used for testing in a group sequential design. While the primary purpose of
the gsDesign package is to design group sequential trials, computing bound-
ary crossing probabilities is the essential next step. Finally, we discuss the
expected sample size for a group sequential design.

2.1 Distributional assumptions

We illustrate the distribution theory with a sequence of normal random vari-
ates. Let 𝑋1, 𝑋2,... be independent and identically distributed normal ran-
dom variables with mean 𝛿 and variance 𝜎2. For some positive integer 𝑘, let
𝑛1 < 𝑛2... < 𝑛𝑘 represent fixed sample sizes where data will be analyzed
and inference surrounding 𝛿 will be examined. This is referred to as a group
sequential design. The first 𝑘 − 1 analyses are referred to as interim analyses,
while the 𝑘𝑡ℎ analysis is referred to as the final analysis. For 𝑖 = 1, 2, ...𝑘
consider estimating 𝛿 with

̂𝛿𝑖 =
𝑛𝑖

∑
𝑗=1

𝑋𝑗/𝑛𝑖 (2.1)

The variance of ̂𝛿𝑖 is 𝜎2/𝑛𝑖 and the corresponding statistical information for
̂𝛿𝑖 is the reciprocal of the variance,

ℐ𝑖 ≡ 𝑛𝑖/𝜎2 (2.2)

21

22 2 Group sequential design theory and notation in brief

for 𝑖 = 1, 2, … , 𝑘. The value 𝛿 will be referred to as the natural parameter
for this problem. We next define the standardized parameter 𝜃 = 𝛿/𝜎 and its
corresponding estimates (assuming 𝜎 known) as

̂𝜃𝑖 =
𝑛𝑖

∑
𝑗=1

𝑋𝑗/(𝜎𝑛𝑖) (2.3)

which has variance 1/𝑛𝑖 for 𝑖 = 1, 2, … , 𝑘.

Next, for 𝑖 = 1, 2, … , 𝑘 we consider the test statistic

𝑍𝑖 = √𝑛𝑖 ̂𝜃𝑖 = √𝐼𝑖 ̂𝛿𝑖. (2.4)

The test statistics 𝑍1, 𝑍2,...,𝑍𝑘 follow a multivariate normal distribution with,
for 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑘,

𝐸{𝑍𝑖} = √𝑛𝑖𝛿/𝜎 ≡ √𝑛𝑖𝜃 (2.5)

and

𝐶𝑜𝑣(𝑍𝑗, 𝑍𝑖) = √𝑛𝑗/𝑛𝑖, (2.6)

or, equivalently,

𝐸{𝑍𝑖} = 𝛿√ℐ𝑖 (2.7)

and

𝐶𝑜𝑣(𝑍𝑗, 𝑍𝑖) = √ℐ𝑗/ℐ𝑖. (2.8)

Given the above formulations, we will tend to think in terms of the natural
parameter 𝛿 and statistical information when considering estimation prob-
lems. When considering sample size, on the other hand, it is often convenient
to think in terms of the standardized parameter 𝜃.

Jennison and Turnbull [Jennison and Turnbull, 2000] refer to Equation 2.7
and Equation 2.8 as the canonical form and present several types of outcomes
for which test statistics for comparing treatment groups take this form asymp-
totically. Specific examples in this manual consider 2-arm trials with binary
or time-to-event outcomes. Note that when 𝛿 = 0, the multivariate normal
distribution expressed in Equation 2.7 and Equation 2.8 (or Equation 2.5 and
Equation 2.6) depends only on ℐ𝑖/ℐ𝑘 = 𝑛𝑖/𝑛𝑘, 𝑖 = 1, 2, … , 𝑘 − 1. Scharfstein,

2.3 Boundary crossing probabilities: gsProbability() 23

Tsiatis and Robins [Scharfstein et al., 1997] provided a unifying theory to
justify the above distribution theory when efficient test statistics are applied
to test a single parameter in a parametric or semi-parametric model; they
noted many cases where test statistics have been shown to be efficient and
analyze and then simulate a study applying longitudinal data analysis. The
application of the canonical distribution to a wide variety of problems is also
discussed by Jennison and Turnbull [Jennison and Turnbull, 2000], among
others. In this manual we consider binomial endpoint studies and time-to-
event endpoint studies as our primary examples.

Computational methods for the gsDesign package related to the above multi-
variate normal distribution are described in Chapter 19 of Jennison and Turn-
bull [Jennison and Turnbull, 2000] and are not provided here. Note that other
software programs such as EAST and the University of Wisconsin software
use this distributional assumption for group sequential design computations.

2.2 Hypotheses and testing

We assume that the primary test the null hypothesis 𝐻0: 𝜃 = 0 against the
alternative 𝐻1: 𝜃 = 𝜃1 for a fixed standardized effect size 𝜃1 > 0. Correspond-
ing to 𝜃1 we have 𝛿1 = 𝜃1𝜎. We will work with 𝜃 most often. The values of
𝜃 and 𝛿 will be referred to as standardized and natural parameter treatment
effects, respectively. We have arbitrarily assumed that 𝜃, 𝛿 > 0 represents a
treatment benefit and will refer to this case as a positive treatment effect. We
assume further that there is interest in stopping early if there is good evidence
to reject one hypothesis in favor of the other. For 𝑖 = 1, 2, … , 𝑘 − 1, interim
cutoffs 𝑙𝑖 < 𝑢𝑖 are set; final cutoffs 𝑙𝑘 ≤ 𝑢𝑘 are also set. For 𝑖 = 1, 2, … , 𝑘, the
trial is stopped at analysis 𝑖 to reject 𝐻0 if 𝑙𝑗 < 𝑍𝑗 < 𝑢𝑗, 𝑗 = 1, 2, … , 𝑖−1 and
𝑍𝑖 ≥ 𝑢𝑖. If the trial continues until stage 𝑖, 𝐻0 is not rejected at stage 𝑖, and
𝑍𝑖 ≤ 𝑙𝑖 then 𝐻1 is rejected in favor of 𝐻0, 𝑖 = 1, 2, … , 𝑘. Thus, 3𝑘 parameters
define a group sequential design: 𝑙𝑖, 𝑢𝑖, and ℐ𝑖, 𝑖 = 1, 2, … , 𝑘. Note that if
𝑙𝑘 < 𝑢𝑘 there is the possibility of completing the trial without rejecting 𝐻0
or 𝐻1. We will often restrict 𝑙𝑘 = 𝑢𝑘 so that one hypothesis is rejected.

2.3 Boundary crossing probabilities: gsProbability()

2.3.1 One-sided testing

We begin with a one-sided test. In this case there is no interest in stopping
early for a lower bound and thus 𝑙𝑖 = −∞, 𝑖 = 1, 2, … , 𝑘. The probability of
first crossing an upper bound at analysis 𝑖, 𝑖 = 1, 2, … , 𝑘, is

24 2 Group sequential design theory and notation in brief

𝛼+
𝑖 (𝜃) = 𝑃𝜃{{𝑍𝑖 ≥ 𝑢𝑖} ∩𝑖−1

𝑗=1 {𝑍𝑗 < 𝑢𝑗}}

The Type I error is the probability of ever crossing the upper bound when
𝜃 = 0. The value 𝛼+

𝑖 (0) is commonly referred to as the amount of Type I error
spent at analysis 𝑖, 1 ≤ 𝑖 ≤ 𝑘. The total upper boundary crossing probability
for a trial is denoted in this one-sided scenario by

𝛼+(𝜃) ≡
𝑘

∑
𝑖=1

𝛼+
𝑖 (𝜃)

and the total Type I error by 𝛼+(0). Assuming 𝛼+(0) = 𝛼 the design will be
said to provide a one-sided group sequential test at level 𝛼.

As an example, assume 𝑘 = 5, 𝑛𝑖 = 100 × 𝑖, and 𝑢𝑖 = Φ−1(0.975) = 1.96,
𝑖 = 1, 2, 3, 4, 5. Thus, we are testing 5 times at a nominal 0.025 level at five
equally spaced analyses. The function gsProbability() is a simple group
sequential calculator to compute the probability of crossing bounds at each
analysis as follows. gsProbability() requires a lower bound; we let 𝑙𝑖 = −20,
1 ≤ 𝑖 ≤ 5 to effectively make the probability of crossing a lower bound 0.
library(gsDesign)

k <- 5
x <- gsProbability(
k = k,
theta = 0,
n.I = 1:k * 100,
a = array(-20, k),
b = array(qnorm(0.975), k)

)
tibble(
Analysis = 1:x$k,
N = x$n.I,
"Upper bound" = x$upper$bound,
"Nominal test level" = pnorm(
x$upper$bound,
lower.tail = FALSE

),
"alpha+[i](0)" = x$upper$prob[, 1],
"Cumulative alpha" = cumsum(x$upper$prob[, 1])

) |>
gt() |>
fmt_number(columns = 3:6, decimals = 3) |>
tab_header(

2.3 Boundary crossing probabilities: gsProbability() 25

title = "Multiplicity problem with repeated testing"
) |>
tab_options(data_row.padding = px(1))

Multiplicity problem with repeated testing

Analysis N Upper bound Nominal test level alpha+[i](0) Cumulative alpha
1 100 1.960 0.025 0.025 0.025
2 200 1.960 0.025 0.017 0.042
3 300 1.960 0.025 0.012 0.054
4 400 1.960 0.025 0.009 0.063
5 500 1.960 0.025 0.008 0.071

Users of gsProbability() may want to look at the the list of items output
since we have just provided a simple summary above. The help file for the
routine provides details of what is returned, which can help you to produce
simple summary tables such as the above. The table above shows that for the
first two equally spaced analyses tested at the 𝛼 = 0.025 level that cumulative
Type I error is already increased to 0.042. At 5 equally-spaced analyses, this
increases to 0.071, nearly triple the nominal level used for testing at each
analysis. These calculations are based on the multivariate normal distribution
above.

In the above code, the call to gsProbability() returned a value into x
which was then printed. The command class(x) following the above code
will indicate that x has class gsProbability. The elements of this class are
displayed as follows:
class(x)
#> [1] "gsProbability"

The names of components are:
names(x)
#> [1] "k" "theta" "n.I" "lower" "upper" "en"
#> [7] "r" "overrun"

Briefly, k is the number of analyses, theta a vector of standardized effect
sizes, and n.I is a vector containing ℐ𝑖, 𝑖 = 1, 2, … , 𝑘. The value in 𝑟 is a
positive integer input to gsProbability() that is used to define how fine of
a grid is used for numerical integration when computing boundary crossing
probabilities; this is the same as input and will normally not be changed
from the default of 18. The values of en and overrun will be discussed below

26 2 Group sequential design theory and notation in brief

in Section 2.4. This leaves the lists lower and upper, which have identical
structure. We examine upper by
x$upper
#> $bound
#> [1] 1.959964 1.959964 1.959964 1.959964 1.959964
#>
#> $prob
#> [,1]
#> [1,] 0.025000000
#> [2,] 0.016558911
#> [3,] 0.012070163
#> [4,] 0.009460567
#> [5,] 0.007769166

to see that it contains a vector bound which contains the values for 𝑢𝑖
and upper boundary crossing probabilities in prob[i,j] for analysis 𝑖 and
the 𝜃-value in theta[j] for i=1,2,...,k and j from 1 to the length of
theta. Further documentation is in the online help file displayed using
help(gsProbability).

A Bonferroni adjustment maintains a Type I error of ≤ 0.025. For 1 ≤ 𝑖 ≤ 5
this would use the upper bound 𝑢𝑖 = Φ−1(1 − .025/5). Substituting qnorm(1
- 0.025 / 5) for qnorm(0.975) in the above call to gsProbability() yields
an upper bound of 2.576 (nominal 𝑝 = 0.005) and total Type I error of 0.016.
Thus, the Bonferroni adjustment is overly conservative.
k <- 5
x <- gsProbability(
k = k,
theta = 0,
n.I = 1:k * 100,
a = array(-20, k),
b = array(qnorm(1 - 0.025 / k), k)

)
tibble(
Analysis = 1:x$k,
N = x$n.I,
"Upper bound" = x$upper$bound,
"Nominal test level" = pnorm(
x$upper$bound,
lower.tail = FALSE

),
"alpha+[i](0)" = x$upper$prob[, 1],
"Cumulative alpha" = cumsum(x$upper$prob[, 1])

) |>
gt() |>

2.3 Boundary crossing probabilities: gsProbability() 27

fmt_number(columns = 3:6, decimals = 3) |>
tab_header(
title = paste0(
"Conservative control of Type I error ",
"using a Bonferroni correction"

)
) |>
tab_options(data_row.padding = px(1))

Conservative control of Type I error using a Bonferroni correction

Analysis N Upper bound Nominal test level alpha+[i](0) Cumulative alpha
1 100 2.576 0.005 0.005 0.005
2 200 2.576 0.005 0.004 0.009
3 300 2.576 0.005 0.003 0.012
4 400 2.576 0.005 0.002 0.014
5 500 2.576 0.005 0.002 0.016

The simple Bonferroni correction does not take advantage of the known cor-
relations between tests and over corrects Type I error. This illustrates the
rationale for finding bounds that control the total Type I error at a desired
level such as 𝛼 = 0.025 without being overly conservative. We now illustrate
bound calculation with the gsDesign() function to derive bounds for con-
trolling Type I error under the multivariate normal distribution noted above.
We do not fully explain now all of the code used to limit output to what is
essential here. We note initially that we input the value n.fix as a sample
size for a fixed design with no interim analyses. The resulting sample sizes
at interims and final are inflated to retain power at the same level as such a
fixed design.
k <- 5
x <- gsDesign(
Number of analyses
k = k,
Superiority testing only,
test.type = 1,
Equal Z-values for each bound
sfu = "Pocock",
Equally spaced analysis timing
timing = 1,
Assume fixed design would require N = k * 100
n.fix = k * 100

28 2 Group sequential design theory and notation in brief

)
x |>
gsBoundSummary(
exclude = c(
"B-value", "Spending", "CP",
"CP H1", "PP", "P(Cross) if delta=1",
"~delta at bound"

)
) |>
gt() |>
tab_header(
title = "Pocock bounds for equally spaced analyses"

) |>
tab_footnote("Now alpha = 0.025 is fully utilized.") |>
tab_footnote(
"Nominal p-value at bound",
locations = cells_body(rows = 0:4 * 3 + 2, columns = 2)

) |>
tab_footnote(
paste0(
"Null hypothesis probability of Type I error ",
"at or before current analyses"

),
cells_body(rows = 1:5 * 3, columns = 2)

) |>
tab_options(data_row.padding = px(1))

We now see that although we cannot test at a nominal 0.025 level repeatedly,
we can test at a nominal level of 0.0079 and control Type I error at 𝛼 = 0.025
without using the overly conservative Bonferroni nominal level of 0.0025.

2.3.2 Two-sided testing

With both lower and upper bounds for testing and any real value 𝜃 represent-
ing treatment effect we denote the probability of crossing the upper boundary
at analysis 𝑖 without previously crossing a bound by

𝛼𝑖(𝜃) = 𝑃𝜃{{𝑍𝑖 ≥ 𝑢𝑖} ∩𝑖−1
𝑗=1 {𝑙𝑗 < 𝑍𝑗 < 𝑢𝑗}},

𝑖 = 1, 2, … , 𝑘. The total probability of crossing an upper bound prior to
crossing a lower bound is denoted by

2.3 Boundary crossing probabilities: gsProbability() 29

Pocock bounds for equally spaced analyses

Analysis Value Efficacy
IA 1: 20% Z 2.4132
N: 121 p (1-sided)1 0.0079

P(Cross) if delta=02 0.0079
IA 2: 40% Z 2.4132
N: 242 p (1-sided)1 0.0079

P(Cross) if delta=02 0.0138
IA 3: 60% Z 2.4132
N: 362 p (1-sided)1 0.0079

P(Cross) if delta=02 0.0183
IA 4: 80% Z 2.4132
N: 483 p (1-sided)1 0.0079

P(Cross) if delta=02 0.0219
Final Z 2.4132
N: 604 p (1-sided)1 0.0079

P(Cross) if delta=02 0.0250
Now alpha = 0.025 is fully utilized.
1Nominal p-value at bound
2Null hypothesis probability of Type I error at or before current
analyses

𝛼(𝜃) ≡
𝑘

∑
𝑖=1

𝛼𝑖(𝜃).

Next, we consider analogous notation for the lower bound. For 𝑖 = 1, 2, … , 𝑘
denote the probability of crossing a lower bound at analysis 𝑖 without previ-
ously crossing any bound by

𝛽𝑖(𝜃) = 𝑃𝜃{{𝑍𝑖 ≤ 𝑙𝑖} ∩𝑖−1
𝑗=1 {𝑙𝑗 < 𝑍𝑗 < 𝑢𝑗}}.

For symmetric testing for analysis 𝑖 we would have 𝑙𝑖 = −𝑢𝑖, 𝛽𝑖(0) = 𝛼𝑖(0),
𝑖 = 1, 2, … , 𝑘. The total lower boundary crossing probability in this case is

written as 𝛽(𝜃) =
𝑘

∑
𝑖=1

𝛽𝑖(𝜃). The total lower boundary crossing probability for

a trial is denoted by

30 2 Group sequential design theory and notation in brief

𝛽(𝜃) ≡
𝑘

∑
𝑖=1

𝛽𝑖(𝜃).

To extend the one-sided example using repeated testing at a 0.025 level to
two-sided testing at the 0.05 level, try the commands
b <- array(qnorm(0.975), 3)
x2 <- gsProbability(
k = 3,
theta = 0,
n.I = c(100, 200, 300),
a = -b,
b = b

)
x2
#> Lower bounds Upper bounds
#> Analysis N Z Nominal p Z Nominal p
#> 1 100 -1.96 0.025 1.96 0.025
#> 2 200 -1.96 0.025 1.96 0.025
#> 3 300 -1.96 0.025 1.96 0.025
#>
#> Boundary crossing probabilities and expected sample size assume
#> any cross stops the trial
#>
#> Upper boundary
#> Analysis
#> Theta 1 2 3 Total E{N}
#> 0 0.025 0.0166 0.0121 0.0536 286.7
#>
#> Lower boundary
#> Analysis
#> Theta 1 2 3 Total
#> 0 0.025 0.0166 0.0121 0.0536

The fact that a lower bound can be crossed before crossing an upper bound
means that after the first interim analysis the upper boundary crossing proba-
bility here should be less than it was for the one-sided computation performed
previously. To examine this further, we print the upper boundary crossing
probability at each analysis for the above one-sided and two-sided examples,
respectively, to see that there is a small difference:
x$upper$prob
#> [,1] [,2]
#> [1,] 0.007906997 0.20587421
#> [2,] 0.005855842 0.26025148

2.3 Boundary crossing probabilities: gsProbability() 31

#> [3,] 0.004509295 0.20860438
#> [4,] 0.003655118 0.14019500
#> [5,] 0.003072747 0.08507493

Group sequential designs most often employ more stringent bounds at early
interim analyses than later. We modify the above example to demonstrate
this.
b <- qnorm(0.975) / sqrt(c(1, 2, 3) / 3)
b
#> [1] 3.394757 2.400456 1.959964

x2b <- gsProbability(
k = 3,
theta = 0,
n.I = c(100, 200, 300),
a = -b,
b = b

)
x2b
#> Lower bounds Upper bounds
#> Analysis N Z Nominal p Z Nominal p
#> 1 100 -3.39 0.0003 3.39 0.0003
#> 2 200 -2.40 0.0082 2.40 0.0082
#> 3 300 -1.96 0.0250 1.96 0.0250
#>
#> Boundary crossing probabilities and expected sample size assume
#> any cross stops the trial
#>
#> Upper boundary
#> Analysis
#> Theta 1 2 3 Total E{N}
#> 0 3e-04 0.008 0.0195 0.0279 298.3
#>
#> Lower boundary
#> Analysis
#> Theta 1 2 3 Total
#> 0 3e-04 0.008 0.0195 0.0279

By setting the interim boundaries to be substantially higher than
Φ−1(0.975) = 1.96 we have drastically reduced the excess Type I error
caused by multiple testing while still testing at the nominal 0.05 (2-sided)
level at the final analysis. Thus, minimal adjustment to the final boundary
should be required when employing such a strategy. Precise control of Type
I error when using either equal bounds or adjusting relative sizes of bounds
using the square root of sample size is discussed further in Section 6.2.

32 2 Group sequential design theory and notation in brief

2.4 Expected sample size

We denote the sample size at analysis 𝑖 by 𝑛𝑖, 𝑖 = 1, 2, … , 𝑘 and the sample
size at the time a boundary is crossed by 𝑁 . The expected sample size is

𝐸𝜃{𝑁} =
𝑘

∑
𝑖=1

𝑛𝑖 × (𝛼𝑖(𝜃) + 𝛽𝑖(𝜃)).

Values of 𝐸𝜃{𝑁} corresponding to 𝜃-values input to gsProbability() in
theta are output in the vector en returned by that function. In the one- and
two-sided examples above we only had a single element 0 in theta and the
expected sample sizes rounded to 293 and 298, respectively; these were labeled
E{N} in the printed output. Since the probability of crossing a boundary at
an interim analysis was small, the trial usually proceeds to the final analysis
with 300 observations. We consider an additional 𝜃-value to demonstrate that
the average sample number can be substantially smaller than the maximum
sample size:
x2c <- gsProbability(
k = 3,
theta = c(0, 0.3),
n.I = c(100, 200, 300),
a = -b,
b = b

)
x2c
#> Lower bounds Upper bounds
#> Analysis N Z Nominal p Z Nominal p
#> 1 100 -3.39 0.0003 3.39 0.0003
#> 2 200 -2.40 0.0082 2.40 0.0082
#> 3 300 -1.96 0.0250 1.96 0.0250
#>
#> Boundary crossing probabilities and expected sample size assume
#> any cross stops the trial
#>
#> Upper boundary
#> Analysis
#> Theta 1 2 3 Total E{N}
#> 0.0 0.0003 0.0080 0.0195 0.0279 298.3
#> 0.3 0.3465 0.6209 0.0320 0.9994 168.6
#>
#> Lower boundary
#> Analysis
#> Theta 1 2 3 Total

2.4 Expected sample size 33

#> 0.0 3e-04 0.008 0.0195 0.0279
#> 0.3 0e+00 0.000 0.0000 0.0000

Thus, assuming a positive treatment effect, the average sample number was
169 compared to 298 when there was no treatment difference.

Chapter 3

Continuous and integer sample size

The gsDesign package has historically used continuous values for sample size
and event counts at the time of design. This has the advantage that timing of
analyses can be precise in terms of specified timing as specified by fraction of
final sample size (normal and binary endpoints) or fraction of targeted events
(time-to-event outcomes). Disadvantages include ambiguity when updating
designs at time of analysis based on integer sample size or event counts as will
be demonstrated below. We illustrate basic implementation of integer-based
sample size in this chapter and provide further examples throughout the
book. The toInteger() function will convert designs to integer-based sample
size. For designs for time-to-event endpoints created using the gsSurv() or
gsSurvCalendar() functions, integer-based event counts are also produced
by the toInteger() design conversion.

We consider a simple design with a user-defined endpoint with a fixed design
sample size of n.fix = 1000 with default 1-sided Type I error 𝛼 = 0.025
and 90% power.
We add a single interim analysis after 60% of the trial is available for analysis
using only a superiority bound for the interim analysis (test.type = 1) and
apply a Hwang et al. [1990] spending function (sfu = sfHSD) with spending
parameter 𝛾 = −3 (sfupar = -3). We see immediately that the derived
design does not have integer sample sizes at analyses.
library(gsDesign)

x <- gsDesign(
n.fix = 1000,
k = 2,
timing = 0.6,
test.type = 1,
sfu = sfHSD,
sfupar = -3

35

36 3 Continuous and integer sample size

)
x$n.I
#> [1] 611.3689 1018.9482

The integer-based sample size for this is obtained as follows:
y <- toInteger(x)
y$n.I
#> [1] 611 1019

The interim sample size above has simply been rounded while the final sample
size has been rounded up. The ratio parameter in the toInteger() function
controls how the full trial sample size rounding is done. The value ratio =
1 assumes 1:1 randomization and, thus, an even total sample size.
y <- toInteger(x, ratio = 1)
y$n.I
#> [1] 611 1020

In the toInteger() function, ratio is used to specify a conversion of the
input design to round up to the next even multiple of ratio + 1 for the
total sample size. Thus, if the randomization ratio were 5:2, we might want
the sample size to be an even multiple of 7 and would would specify:
toInteger(x, ratio = 6)$n.I
#> [1] 611 1022

There is also a parameter roundUpFinal with a default value of TRUE. If
FALSE, rather than rounding the final value up, it is just rounded. In our
example above, this makes no difference.
toInteger(x, ratio = 2, roundUpFinal = FALSE)$n.I
#> [1] 611 1020

For the design with 1:1 randomization and an even sample size, rather than
the input information fraction of 0.6 at analysis 1 we have slightly smaller
value
y$n.I[1] / y$n.I[2]
#> [1] 0.5990196

Also, rather than the originally targeted power of 90%, we have a total power
of
100 * sum(y$upper$prob[, 2])
#> [1] 90.0303

Now we update the design assuming instead of 2 analyses after 611 and 1020
observations we have 3 analyses as shown in the code below. Most of the code
in the gsDesign() call is copying in parameters from the design defined in

3 Continuous and integer sample size 37

the integer-based sample size design y above. We note the Z-value bounds
for efficacy under the asymptotic distributional assumptions of the previous
chapter.
yu <- gsDesign(
Assume 3 analyses actually done
k = 3, n.I = c(400, 700, 1100),
Remaining parameters copied from original design
maxn.IPlan = y$n.I[y$k],
test.type = y$test.type,
alpha = y$alpha, beta = y$beta, astar = y$astar,
sfu = y$upper$sf, sfupar = y$upper$param,
sfl = y$lower$sf, sflpar = y$lower$param,
delta = y$delta, delta1 = y$delta1, delta0 = y$delta0,

)
yu$upper$bound
#> [1] 2.754625 2.444650 2.038284

A key parameter in the above that leads to some ambiguity in the case
continuous sample size is maxn.IPlan, the planned sample size or, for time-to-
event outcomes, the planned final analysis event count. The prescribed way
to do this is as follows which is identical to the coding approach above for
yu, replacing the integer sample size design in y with the continuous sample
size design in x:
xu <- gsDesign(
Assume 3 analyses actually done
k = 3, n.I = c(400, 700, 1100),
Remaining parameters copied from original design
maxn.IPlan = x$n.I[x$k],
test.type = y$test.type,
alpha = x$alpha, beta = x$beta, astar = x$astar,
sfu = x$upper$sf, sfupar = x$upper$param,
sfl = x$lower$sf, sflpar = x$lower$param,
delta = x$delta, delta1 = x$delta1, delta0 = x$delta0,

)
xu$upper$bound
#> [1] 2.754051 2.443665 2.038577

This gives a slightly different result than if we specify the rounded (integer)
sample size from the original design in maxn.IPlan, the only change from the
code above.
xu <- gsDesign(
Assume 3 analyses actually done
k = 3, n.I = c(400, 700, 1100),
Remaining parameters copied from original design

38 3 Continuous and integer sample size

maxn.IPlan = 1020,
test.type = y$test.type,
alpha = x$alpha, beta = x$beta, astar = x$astar,
sfu = x$upper$sf, sfupar = x$upper$param,
sfl = x$lower$sf, sflpar = x$lower$param,
delta = x$delta, delta1 = x$delta1, delta0 = x$delta0,

)
xu$upper$bound
#> [1] 2.754625 2.444650 2.038284

With the integer-based design in y, maxn.IPlan will be 1020 if gotten from
y$n.I[y$k] or entered directly from a summary table removing any ambi-
guity about how bounds should be updated at the time of study analyses
when event counts or sample size realized will generally be different from the
original plan simply due to logistical considerations.

Chapter 4

Applying the default group sequential
design

4.1 Default parameters

We are now prepared to demonstrate derivation of group sequential designs
using default parameters with the gsDesign() function. Along with this,
we discuss the gsDesign class returned by gsDesign() and its associated
standard print and plot functions. We then apply this default group sequen-
tial design to each of our motivational examples. The main parameters in
gsDesign() will be explained in more detail in Chapter 6 through Chap-
ter 8.

The main parameter defaults that you need to know about are as follows:

1. Overall Type I error (𝛼, one-sided): alpha = 0.025.
2. Overall Type II error (𝛽 = 1 − power): beta = 0.1.
3. Two interim analyses equally spaced at 1/3 and 2/3 of the way through

the trial plus the final analysis: k=3.
4. test.type = 4, which specifies all of the following:

• Asymmetric boundaries, which means we may stop the trial for futility
or superiority at an interim analysis.

• 𝛽-spending is used to set the lower stopping boundary. This means that
the spending function controls the incremental amount of Type II error
at each analysis, 𝛽𝑖(𝜃1), 𝑖 = 1, 2, … , 𝐾.

• Non-binding lower bound. Lower bounds are sometimes considered as
guidelines, which may be ignored during the course of the trial. Since
Type I error is inflated if this if futility bounds are ignored, regulators
often demand that the lower bounds be ignored when computing Type
I error. That is, Type I error is computed using 𝛼+(𝜃) rather than 𝛼(𝜃).

5. Hwang-Shih-DeCani spending functions for the upper bound (sfu =
sfHSD) with 𝛾-parameter sfupar = -4 and lower bound (sfl = sfHSD)
with 𝛾-parameter sflpar = -2. This provides a conservative, O’Brien-

39

40 4 Applying the default group sequential design

Fleming-like superiority bound and a less conservative lower bound.
Spending functions will be discussed in detail in Chapter 8.

6. The following parameters are related to numerical accuracy and will not
be discussed further here as they generally would not be changed by the
user: tol = 0.000001, r = 18. Further information is in the help file.

7. The input variable endpoint (default is NULL) at present impacts default
options for plots approximating the treatment effect at a boundary. If
endpoint = "binomial" then the y-axis will change to a default label
̂𝑝𝐶 − ̂𝑝𝐸; for a study with a time-to-event outcome created with gsSurv()

this is not needed.
8. delta1 (default 1) indicates the alternative hypothesis value on the natural

(𝛿) parameter scale; e.g., log(HR) or risk difference. This is used to scale
the treatment effect plot.

9. delta0 is the null hypothesis value on the natural (𝛿) parameter scale.
Generally, this will be 0, but may be changed if you are testing for nonin-
feriority or, as in a vaccine study, supersuperiority.

10. nFixSurv (default of 0) is used to indicate the sample size for a fixed design
for a survival trial. This is not needed and not computed if gsSurv() is
used to derive a design for the time-to-event endpoint, so it is not likely
to be used. If used, n.fix would indicate the number of endpoints for this
trial to be powered as specified. By providing nFixSurv, printed output
from a gsDesign object will include the total sample size as well as the
number of events at interim and final analysis.

11. The following parameters are used to reset bounds when timing of analyses
are changed from the original design and will be discussed in Section 8.4:
• maxn.IPlan, if resetting timing of analyses, this contains the statisti-

cal information/sample size/number of events at the originally planned
final analysis.

• n.I, if maxn.IPlan > 0 this is a vector of length k containing actual
statistical information/sample size/number of events at each analysis.

4.2 Sample size ratio for a group sequential design
compared to a fixed design.

In Chapter 2 and its subsections we gave distributional assumptions, defined
testing procedures and denoted probabilities for boundary crossing. Consider
a trial with a fixed design (no interim analyses) with power 100(1–𝛽) and level
𝛼 (1-sided). Denote the sample size as 𝑁𝑓𝑖𝑥 and statistical information for
this design as ℐ𝑓𝑖𝑥. For a group sequential design as noted above, we denote
the information ratio (inflation factor) comparing the information planned
for the final analysis of a group sequential design compared to a fixed design
as

4.3 The default call to gsDesign() 41

𝑟 = ℐ𝑘/ℐ𝑓𝑖𝑥 = 𝑛𝑘/𝑁𝑓𝑖𝑥. (4.1)

This ratio is independent of the 𝜃- or 𝛿-value for which the trial is powered
as long as the information (sample size) available at each analysis increases
proportionately with ℐ𝑓𝑖𝑥 and the boundaries for the group sequential design
remain unchanged; see, for example, Jennison and Turnbull [Jennison and
Turnbull, 2000]. Because of this, the default for gsDesign() is to print the
sample size ratios 𝑟𝑖 = ℐ𝑖/ℐ𝑘, 𝑖 = 1, 2, … , 𝑘 when the default value of n.fix
= 1 is used. With larger values of n.fix, a column labeled N is provided to
give the sample size or number of events at each analysis. We demonstrate
in the following subsections how to set n.fix to apply to our motivating
examples.

4.3 The default call to gsDesign()

We begin with the call x <- gsDesign() to generate a design using all default
arguments. The next line prints a summary of x; this produces the same effect
as print(x) or print.gsDesign(x). Note that while the total Type I error is
0.025, this assumes the lower bound is ignored if it is crossed; looking lower in
the output we see the total probability of crossing the upper boundary at any
analysis when the lower bound stops the trial is 0.0233. Had the option x <-
gsDesign(test.type = 3) been run, both of these numbers would assume
the trial stops if the lower bound stopped and thus would both be 0.025.
library(gsDesign)

x <- gsDesign()
x
#> Asymmetric two-sided group sequential design with
#> 90 % power and 2.5 % Type I Error.
#> Upper bound spending computations assume
#> trial continues if lower bound is crossed.
#>
#> Sample
#> Size ----Lower bounds---- ----Upper bounds-----
#> Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++
#> 1 0.357 -0.24 0.4057 0.0148 3.01 0.0013 0.0013
#> 2 0.713 0.94 0.8267 0.0289 2.55 0.0054 0.0049
#> 3 1.070 2.00 0.9772 0.0563 2.00 0.0228 0.0188
#> Total 0.1000 0.0250
#> + lower bound beta spending (under H1):
#> Hwang-Shih-DeCani spending function with gamma = -2.

42 4 Applying the default group sequential design

#> ++ alpha spending:
#> Hwang-Shih-DeCani spending function with gamma = -4.
#> * Sample size ratio compared to fixed design with no interim
#>
#> Boundary crossing probabilities and expected sample size
#> assume any cross stops the trial
#>
#> Upper boundary (power or Type I Error)
#> Analysis
#> Theta 1 2 3 Total E{N}
#> 0.0000 0.0013 0.0049 0.0171 0.0233 0.6249
#> 3.2415 0.1412 0.4403 0.3185 0.9000 0.7913
#>
#> Lower boundary (futility or Type II Error)
#> Analysis
#> Theta 1 2 3 Total
#> 0.0000 0.4057 0.4290 0.1420 0.9767
#> 3.2415 0.0148 0.0289 0.0563 0.1000

A plot of study bounds on the Z-value scale is provided by:
p <- plot(x)
p

3.01

2.55

2

−0.24

0.94

2

r=0.357 r=0.713 r=1.07

0

1

2

3

0.5 0.7 0.9 1.1
Information relative to fixed sample design

N
or

m
al

 c
rit

ic
al

 v
al

ue

Bound

Lower

Upper

Normal test statistics at bounds

There are several other plots available as will be discussed below. A brief
textual summary of the design is obtained with:

4.3 The default call to gsDesign() 43

summary(x)

#> Asymmetric two-sided group sequential design with
#> non-binding futility bound, 3 analyses, sample size 2, 90
#> percent power, 2.5 percent (1-sided) Type I error. Efficacy
#> bounds derived using a Hwang-Shih-DeCani spending function
#> with gamma = -4. Futility bounds derived using a
#> Hwang-Shih-DeCani spending function with gamma = -2.

A tabular summary of bounds is generated with
gsBoundSummary(x)
#> Analysis Value Efficacy Futility
#> IA 1: 33% Z 3.0107 -0.2387
#> N/Fixed design N: 0.36 p (1-sided) 0.0013 0.5943
#> ~delta at bound 1.5553 -0.1233
#> P(Cross) if delta=0 0.0013 0.4057
#> P(Cross) if delta=1 0.1412 0.0148
#> IA 2: 67% Z 2.5465 0.9411
#> N/Fixed design N: 0.71 p (1-sided) 0.0054 0.1733
#> ~delta at bound 0.9302 0.3438
#> P(Cross) if delta=0 0.0062 0.8347
#> P(Cross) if delta=1 0.5815 0.0437
#> Final Z 1.9992 1.9992
#> N/Fixed design N: 1.07 p (1-sided) 0.0228 0.0228
#> ~delta at bound 0.5963 0.5963
#> P(Cross) if delta=0 0.0233 0.9767
#> P(Cross) if delta=1 0.9000 0.1000

Above we have seen standard output for gsDesign(). To access individual
items of information about what is returned from the above, use names(x)
to list the elements of x. Type help(gsDesign) to get full documentation of
the class gsDesign returned by the gsDesign() function; the documentation
website at https://keaven.github.io/gsDesign/ can also be useful. To view an
individual element of x type, for example, x$delta, the standardized effect
size for the design (𝜃 from).

Other elements of x can be accessed in the same way, and we will use these
to display aspects of designs in further examples. Of particular interest are
the elements upper and lower. These are both objects containing multiple
variables concerning the upper and lower boundaries and boundary crossing
probabilities. Type names(x$upper) to show what these variables are. The
upper boundary can be shown with the command x$upper$bound. As an
example plot, enter plot(x, plottype=2)) for a power plot. The argument
plottype can run from 1 (the default) to 8. The options not already noted
plot approximate effect sizes at boundaries (plottype=3; see plottype=8
for hazard ratio), conditional power at boundaries (plottype=4), 𝛼- and 𝛽-

https://keaven.github.io/gsDesign/

44 4 Applying the default group sequential design

spending functions (plottype=5), expected sample size by underlying treat-
ment difference (plottype=6), B-values at boundaries (plottype=7), and ap-
proximate hazard ratio at boundaries for designs for time-to-event outcomes
(plottype=8).

4.4 Applying the default design to the CAPTURE
example

The sample size ratios for each analysis relative to a fixed design sample size
from Equation 4.1 can be obtained as follows:
x$n.I
#> [1] 0.3566277 0.7132555 1.0698832

These will be applied to each of our examples. Recall from the CAPTURE
trial that we had a binomial outcome and wished to detect a reduction in the
primary endpoint from a 15% event rate in the control group to a 10% rate
in the experimental group. While we consider 80% power elsewhere, we stick
with the default of 90% here. A group sequential design with 90% power and
2.5% Type I error has the same bounds as shown previously. The sample size
at each analysis is obtained as follows (continuing the code just above):
n.fix <- nBinomial(p1 = 0.15, p2 = 0.1)
n.fix
#> [1] 1834.641

n.fix * x$n.I
#> [1] 654.284 1308.568 1962.852

Rounding up to an even number for the final analysis, we see from the above
that a while a fixed design requires 1836 patients, employing the default
group sequential design inflates the sample size requirement to 1964. Interim
analyses would be performed after approximately 655 and 1309 patients.

The group sequential design can be derived directly by replacing the input
parameter n.fix with the sample size from a fixed design trial as follows:
library(dplyr)

n.I <- nBinomial(p1 = 0.15, p2 = 0.1)
delta1 describes natural parameter risk difference
x <- gsDesign(
n.fix = n.I,
delta1 = 0.05,
endpoint = "binomial"

) |> toInteger(ratio = 1)

4.4 Applying the default design to the CAPTURE example 45

x$n.I
#> [1] 654 1309 1964

The toInteger() function converts the continuous sample size created by
gsDesign() to an integer-based sample size design. The argument ratio =
1 in the toInteger() call indicates 1:1 randomization (experimental:control)
and will round up the final sample size to an even integer. We will also see
below that this yields slightly above the targeted 90% power. Printing the
design now replaces the sample size ratio with the actual sample sizes at each
analysis.
x
#> Asymmetric two-sided group sequential design with
#> 90 % power and 2.5 % Type I Error.
#> Upper bound spending computations assume
#> trial continues if lower bound is crossed.
#>
#> ----Lower bounds---- ----Upper bounds-----
#> Analysis N Z Nominal p Spend+ Z Nominal p Spend++
#> 1 654 -0.24 0.4053 0.0148 3.01 0.0013 0.0013
#> 2 1309 0.94 0.8267 0.0289 2.55 0.0054 0.0049
#> 3 1964 2.00 0.9772 0.0563 2.00 0.0228 0.0188
#> Total 0.1000 0.0250
#> + lower bound beta spending (under H1):
#> Hwang-Shih-DeCani spending function with gamma = -2.
#> ++ alpha spending:
#> Hwang-Shih-DeCani spending function with gamma = -4.
#>
#> Boundary crossing probabilities and expected sample size
#> assume any cross stops the trial
#>
#> Upper boundary (power or Type I Error)
#> Analysis
#> Theta 1 2 3 Total E{N}
#> 0.0000 0.0013 0.0049 0.0171 0.0233 1146.9
#> 0.0757 0.1410 0.4406 0.3186 0.9001 1452.4
#>
#> Lower boundary (futility or Type II Error)
#> Analysis
#> Theta 1 2 3 Total
#> 0.0000 0.4053 0.4294 0.1420 0.9767
#> 0.0757 0.0148 0.0289 0.0562 0.0999

Rather than printing the design as above, we recommend using the summary()
function for a textual summary and gsBoundSummary() for a table summa-
rizing bounds.

46 4 Applying the default group sequential design

summary(x)

#> Asymmetric two-sided group sequential design with
#> non-binding futility bound, 3 analyses, sample size 1964,
#> 90 percent power, 2.5 percent (1-sided) Type I error.
#> Efficacy bounds derived using a Hwang-Shih-DeCani spending
#> function with gamma = -4. Futility bounds derived using a
#> Hwang-Shih-DeCani spending function with gamma = -2.

x |> gsBoundSummary(deltaname = "Risk difference")
#> Analysis Value Efficacy Futility
#> IA 1: 33% Z 3.0113 -0.2397
#> N: 654 p (1-sided) 0.0013 0.5947
#> ~Risk difference at bound 0.0778 -0.0062
#> P(Cross) if Risk difference=0 0.0013 0.4053
#> P(Cross) if Risk difference=0.05 0.1410 0.0148
#> IA 2: 67% Z 2.5468 0.9413
#> N: 1309 p (1-sided) 0.0054 0.1733
#> ~Risk difference at bound 0.0465 0.0172
#> P(Cross) if Risk difference=0 0.0062 0.8347
#> P(Cross) if Risk difference=0.05 0.5815 0.0437
#> Final Z 1.9992 1.9992
#> N: 1964 p (1-sided) 0.0228 0.0228
#> ~Risk difference at bound 0.0298 0.0298
#> P(Cross) if Risk difference=0 0.0233 0.9767
#> P(Cross) if Risk difference=0.05 0.9001 0.0999

The risk difference at bound line gives an approximate minimum difference
in event rates that will result in crossing a bound. This should work well
when the average risk across arms is the same as the design average, in this
case (0.15 + 0.1) / 2 = 0.125. For instance, looking at an observed risk
difference of approximately 0.0078 at interim 1 when the average risk of the
2 arms is approximately 0.125 yields a Z-statistic close to that in the above
table (3.01)
Risk reduction uses x1, n1 for control,
x2, n2 for experimental group.
testBinomial(
x1 = round((0.125 + 0.0778 / 2) * 327), # 54 events
x2 = round((0.125 - 0.0778 / 2) * 327), # 28 events
n1 = 327, n2 = 327

)
#> [1] 3.070134

However, if the overall absolute risk is different this approximation will not
work well:

4.4 Applying the default design to the CAPTURE example 47

Lower risk
testBinomial(
x1 = round((0.1 + 0.0778 / 2) * 327), # 45 events
x2 = round((0.1 - 0.0778 / 2) * 327), # 20 events
n1 = 327, n2 = 327

)
#> [1] 3.267492

Higher risk
testBinomial(
x1 = round((0.15 + 0.0778 / 2) * 327), # 62 events
x2 = round((0.15 - 0.0778 / 2) * 327), # 36 events
n1 = 327, n2 = 327

)
#> [1] 2.848471

4.4.1 Simulation of a binomial design

Testing at each analysis can be performed using the Miettinen and Nurminen
[Miettinen and Nurminen, 1985] method. Simulation to verify the normal ap-
proximation is adequate for comparing binomial event rates can be performed
using the functions simBinomial and testBinomial using the CAPTURE
fixed design from above with N = 1836. This is only set up for fixed design,
but suggests that the normal approximations used for power and Type I error
calculations are quite good.
Show that power is 90% using simulation
Z <- simBinomial(
nsim = 100000,
p1 = 0.15,
p2 = 0.1,
n1 = 1836 / 2,
n2 = 1836 / 2

)
mean(Z >= qnorm(0.975))
#> [1] 0.90273

Under the null hypothesis, we have:
Show that Type I error is 2.5%
Z <- simBinomial(
nsim = 100000,
p1 = 0.125,
p2 = 0.125,

48 4 Applying the default group sequential design

n1 = 1836 / 2,
n2 = 1836 / 2

)
mean(Z >= qnorm(0.975))
#> [1] 0.0252

4.4.2 Applying the default design to the noninferiority
example

The fixed noninferiority design for a binomial comparison is the same as
above, only changing the nBinomial() call to
n.fix <- nBinomial(p1 = 0.677, p2 = 0.677, delta0 = -0.07)

delta0 is minus the non-inferiority margin,
in this case, we are trying to rule out
a risk increase over control of 0.07 or more.
ni_design <- gsDesign(
n.fix = n.fix,
delta0 = -0.07,
delta1 = 0,
endpoint = "binomial"

) |> toInteger(ratio = 1)
ni_design |> gsBoundSummary(deltaname = "Risk difference")
#> Analysis Value Efficacy Futility
#> IA 1: 33% Z 3.0107 -0.2386
#> N: 668 p (1-sided) 0.0013 0.5943
#> ~Risk difference at bound 0.0389 -0.0786
#> P(Cross) if Risk difference=-0.07 0.0013 0.4057
#> P(Cross) if Risk difference=0 0.1412 0.0148
#> IA 2: 67% Z 2.5465 0.9412
#> N: 1336 p (1-sided) 0.0054 0.1733
#> ~Risk difference at bound -0.0049 -0.0459
#> P(Cross) if Risk difference=-0.07 0.0062 0.8347
#> P(Cross) if Risk difference=0 0.5815 0.0437
#> Final Z 1.9992 1.9992
#> N: 2004 p (1-sided) 0.0228 0.0228
#> ~Risk difference at bound -0.0283 -0.0283
#> P(Cross) if Risk difference=-0.07 0.0233 0.9767
#> P(Cross) if Risk difference=0 0.9000 0.1000

We examine the risk difference approximations at the efficacy and futility
bounds at analysis 2. First, for the futility bound 468 events in the experi-

4.5 Applying the default design to the cancer trial example 49

mental group vs. 437 in the control is a big enough increase in risk to declare
futility for an eventual non-inferiority finding with an allowable increase in
risk of no more than 0.07:
testBinomial(
delta0 = -0.07, n1 = 668, n2 = 668,
x1 = round((0.677 - 0.0459 / 2) * 668), # 437 events
x2 = round((0.677 + 0.0459 / 2) * 668) # 468 events

)
#> [1] 0.9244426

For the efficacy bound 454 experimental events in the experimental group
vs. 451 in the control group is sufficient at the second interim to declare non-
inferiority (i.e., rule out more than a 0.07 risk difference in the experimental
group vs. control):
testBinomial(
delta0 = -0.07, n1 = 668, n2 = 668,
x1 = round((0.677 - 0.0049 / 2) * 668), # 451 events
x2 = round((0.677 + 0.0049 / 2) * 668) # 454 events

)
#> [1] 2.564413

We see these approximations are quite reasonable when to overall average
event rate is 0.677.

4.5 Applying the default design to the cancer trial
example

For trials with time-to-event outcomes, the variable n.fix in gsDesign()
needed is the number of events from a fixed design trial. The reader may
wish to refer to Jennison and Turnbull [Jennison and Turnbull, 2000] for
further background; we also discuss distributional assumptions further in
Section 7.3.2. We begin with the code from the fixed design trial for the cancer
trial example from Section 1.6. Next, we call to gsDesign() with n.fix equal
to the number of events for a fixed trial design. The value ssratio, the sample
size ratio at each analysis compared to the fixed design sample size is then
shown. Note that the values are the same as shown in the first output of this
example above. The inflation in the total sample size is the same as for the
number of events required if enrollment duration and dropout rates are not
changed; that is, the sample size required for a group sequential design with
the default interim analysis plan is inflated by multiplying by 1.07. In the last
line of code below, we demonstrate a plot showing the approximate hazard
ratios required to cross a bound.

50 4 Applying the default group sequential design

x <- nSurv(
lambdaC = log(2) / 6,
hr = 0.7,
eta = -log(0.95) / 12,
minfup = 6,
T = 36

)
y <- gsDesign(n.fix = x$d)
y$n.I
#> [1] 117.3648 234.7296 352.0945

y <- gsSurv(
lambdaC = log(2) / 6,
hr = 0.7,
eta = -log(0.95) / 12,
minfup = 6,
T = 36

) |> toInteger()
y$n.I

The overall design summary is:
summary(y)

#> Asymmetric two-sided group sequential design with
#> non-binding futility bound, 3 analyses, sample size 353, 90
#> percent power, 2.5 percent (1-sided) Type I error. Efficacy
#> bounds derived using a Hwang-Shih-DeCani spending function
#> with gamma = -4. Futility bounds derived using a
#> Hwang-Shih-DeCani spending function with gamma = -2.

The boundary summary table is obtained with:
y |> gsBoundSummary(deltaname = "HR")
#> Analysis Value Efficacy Futility
#> IA 1: 33% Z 3.0107 -0.2387
#> N: 118 p (1-sided) 0.0013 0.5943
#> ~HR at bound 0.5736 1.0451
#> P(Cross) if HR=0 0.0013 0.4057
#> P(Cross) if HR=1 0.1412 0.0148
#> IA 2: 67% Z 2.5465 0.9411
#> N: 235 p (1-sided) 0.0054 0.1733
#> ~HR at bound 0.7172 0.8844
#> P(Cross) if HR=0 0.0062 0.8347
#> P(Cross) if HR=1 0.5815 0.0437
#> Final Z 1.9992 1.9992
#> N: 353 p (1-sided) 0.0228 0.0228

4.5 Applying the default design to the cancer trial example 51

#> ~HR at bound 0.8081 0.8081
#> P(Cross) if HR=0 0.0233 0.9767
#> P(Cross) if HR=1 0.9000 0.1000

In order to update the design, we consider the planned maximum number
of events and the achieved events at each analysis. For example, if we have
125, 250 and 365 events at the 3 analyses we update bounds as below. Note
that if this is a mixture of planned (later analyses) and actual events (earlier
analyses), this is fine. Is also possible to have fewer or more analyses than in
the original design.
Update time-to-event group sequential design
yu <- gsDesign(
Number of analyses
k = 3,
Type I error
alpha = y$alpha,
Type II error (1 - power)
beta = y$beta,
Final planned event count
maxn.IPlan = max(y$n.I),
Actual event counts at analyses
n.I = c(125, 250, 364),
Bound type (in this case, non-binding futility)
test.type = y$test.type,
Efficacy spending function
sfu = y$upper$sf,
Parameter(s) for beta-spending (futility)
sfupar = y$upper$param,
Futility spending function
sfl = y$lower$sf,
Futility spending function parameter(s)
sflpar = y$lower$param,
Standardized effect size
delta = y$delta,
Natural parameter under H1 (ln(HR))
delta1 = y$delta1,
Natural parameter under H0 (ln(1) = 0 for superiority)
delta0 = y$delta0

)
gsBoundSummary(
yu,
deltaname = "HR",
logdelta = TRUE,
Nname = "Events",

52 4 Applying the default group sequential design

digits = 4,
exclude = c(
"Z", "B-value", "CP", "CP H1", "PP", "~HR at bound",
Following line deletes probability of boundary crossing
under null and alternate hypothesis; this must be customized,
if needed
paste0("P(Cross) if HR=", c("0.7", "1"))

)
)
#> Analysis Value Efficacy Futility
#> IA 1: 36% p (1-sided) 0.0015 0.5565
#> Events: 125 Spending 0.0015 0.0162
#> P(Cross) if HR=2.72 0.1641 0.0162
#> IA 2: 71% p (1-sided) 0.0066 0.1381
#> Events: 250 Spending 0.0061 0.0329
#> P(Cross) if HR=2.72 0.6414 0.0491
#> Final p (1-sided) 0.0223 0.0223
#> Events: 364 Spending 0.0175 0.0509
#> P(Cross) if HR=2.72 0.9046 0.0954

To avoid confusion we have limited the number of parameters displayed as
only the 1-sided nominal 𝑝-value (p (1-sided)) should be needed to evaluate
boundary crossing. Different parameters can be excluded from the table by
changing the list passed to the exclude argument.

4.6 Further properties of designs

We consider further the design for a time-to-event variable assuming propor-
tional hazards. To understand properties of the design better, we consider
selected summary plots and we also demonstrate the gsProbability() func-
tion. First, we plot the operating characteristics for a larger set of hazard
ratios than in the standard printout above.
plot(y, plottype = "Power")

4.6 Further properties of designs 53

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
δ

C
um

ul
at

iv
e

B
ou

nd
ar

y
C

ro
ss

in
g

P
ro

ba
bi

lit
y

Analysis

1

2

3

Probability

1−Lower bound

Upper bound

Boundary crossing probabilities by effect size

The solid black line is of most interest as it shows the power of the design for
different underlying hazard ratios. The dotted black line shows the probability
of crossing the efficacy bound at the first interim, while the dashed black line
shows the cumulative probability of crossing at the first or second interim.
The red dotted line shows 1 minus the probability of crossing the futility
bound at the first interim analysis for different hazard ratios. The red dashed
line show 1 minus the cumulative probability of crossing the futility bound
at the first or second interim analysis. For each hazard ratio, the lines divide
the outcomes vertically into mutually exclusive possibilities for the trial; in
this case (from bottom to top) 1) probability of first cross being efficacy at
interim 1 (below dotted black line), 2) first cross being efficacy at interim 2
(between dotted and dashed black lines), 3) first crossing being efficacy at
final analysis (between dashed and solid black lines), 4) first crossing being
futility at final analysis (between solid black and dashed red lines), 5) first
crossing being futility at analysis 2 (between dashed and dotted red lines),
and 6) first crossing being futility at analysis 1 (above red dotted red line).

Note that the plot() function for the gsDesign class (used here) is an ex-
tension of the standard plot() function, and thus allows use of many of its
parameters, such as line width (lwd), line type (lty), plot titles and axis
labels.

The first two lines of code below demonstrate that a group sequential design
generated by gsDesign() or gsSurv() can be input to gsProbability()
to obtain boundary crossing probabilities for an extended set of parameter
values. The theta values in the output make more sense in this case when
they are computed relative to the effect size (log hazard ratio) y$delta1= 1

54 4 Applying the default group sequential design

or hazard ratio exp(y$delta1)= 2.72for which the trial is powered; this is
more easily seen in the power plot above than in the printout below.
hr <- seq(0.4, 1.1, 0.1)
yp <- gsProbability(theta = log(hr) * y$delta / y$delta1, d = y)
yp
#> Asymmetric two-sided group sequential design with
#> 90 % power and 2.5 % Type I Error.
#> Upper bound spending computations assume
#> trial continues if lower bound is crossed.
#>
#> ----Lower bounds---- ----Upper bounds-----
#> Analysis N Z Nominal p Spend+ Z Nominal p Spend++
#> 1 118 -0.24 0.4057 0.0148 3.01 0.0013 0.0013
#> 2 235 0.94 0.8267 0.0289 2.55 0.0054 0.0049
#> 3 353 2.00 0.9772 0.0563 2.00 0.0228 0.0188
#> Total 0.1000 0.0250
#> + lower bound beta spending (under H1):
#> Hwang-Shih-DeCani spending function with gamma = -2.
#> ++ alpha spending:
#> Hwang-Shih-DeCani spending function with gamma = -4.
#>
#> Boundary crossing probabilities and expected sample size
#> assume any cross stops the trial
#>
#> Upper boundary (power or Type I Error)
#> Analysis
#> Theta 1 2 3 Total E{N}
#> -0.1637 0.0000 0.0000 0.0000 0.0000 124.7
#> -0.1239 0.0000 0.0000 0.0000 0.0000 133.5
#> -0.0913 0.0000 0.0000 0.0001 0.0001 145.0
#> -0.0637 0.0001 0.0002 0.0005 0.0008 158.6
#> -0.0399 0.0003 0.0007 0.0023 0.0033 173.6
#> -0.0188 0.0007 0.0021 0.0071 0.0098 189.5
#> 0.0000 0.0013 0.0049 0.0171 0.0233 205.6
#> 0.0170 0.0024 0.0101 0.0343 0.0467 221.4
#>
#> Lower boundary (futility or Type II Error)
#> Analysis
#> Theta 1 2 3 Total
#> -0.1637 0.9376 0.0621 0.0003 1.0000
#> -0.1239 0.8650 0.1329 0.0021 1.0000
#> -0.0913 0.7734 0.2175 0.0089 0.9999
#> -0.0637 0.6743 0.2997 0.0252 0.9992
#> -0.0399 0.5766 0.3662 0.0538 0.9967

4.6 Further properties of designs 55

#> -0.0188 0.4861 0.4098 0.0942 0.9902
#> 0.0000 0.4057 0.4290 0.1420 0.9767
#> 0.0170 0.3361 0.4264 0.1909 0.9533

Say we wish to compare values for y$theta = 0.2559 to the plot above; we
can translate to the HR scale with
exp(yp$theta[3] * y$delta1 / y$delta)
#> [1] 0.6

The we see the incremental probabilities described for the plot when HR = 0.6
are (from the table above): 0.4029, 0.5141, 0.0787, 0.0018, 0.0012, and 0.0013,
respectively. Thus, the most likely outcomes are positive efficacy findings at
interim 1 or 2 when the true underlying HR=0.6.
p <- plot(y, plottype = 6)
p

150

200

250

0.0 0.5 1.0 1.5 2.0
δ

E
xp

ec
te

d
sa

m
pl

e
si

ze

Expected sample size by underlying treatment difference

Following is a plot with the approximate hazard ratio required to cross each
bound. The 𝑦-axis shows the expected number of events in the analysis where
a bound is first crossed or, if no bound is crossed, the final analysis. relative
to a fixed design trial when the sample size ratio is computed; if we had input
a fixed design sample size, the 𝑦-axis would show the actual expected sample
size. This plot demonstrates the ability of a group sequential design to ap-
propriate adapt sample size to come to an appropriate conclusion depending
on the true treatment effect.

56 4 Applying the default group sequential design

p <- plot(y, plottype = "HR")
p

Chapter 5

Time-to-event sample size derivation

We extend the Lachin and Foulkes [Lachin and Foulkes, 1986] method to
cases where the null hypothesis does not reflect equality. This includes non-
inferiority scenarios. For vaccines or other prevention studies this also in-
cludes super-superiority. Denote the null hypothesis failure rates for control
and experimental treatment groups as 𝜆00 and 𝜆01, respectively. Denote the
alternate hypothesis rates as 𝜆10 and 𝜆11. Further, denote the alternate hy-
pothesis hazard ratio ℎ1 = 𝜆11/𝜆10, and the null hypothesis hazard ratio
ℎ0 = 𝜆01/𝜆00. We let censoring rates be specific to the control (𝜂0) and ex-
perimental (𝜂1) groups; these values are only implicit in the equations below.
Further, we let 𝜉 denote the proportion of subjects randomized to the exper-
imental treatment group. Finally, we let 𝜂 represent an exponential dropout
rate independent and the time to dropout is independent of the time until
an event. Lachin and Foulkes assumed a null hypothesis with no difference
between failure rates in the control and experimental rates and test for supe-
riority. That is, 𝜆00 = 𝜆01 (ℎ0 = 1) and 𝜆10 < 𝜆01 (ℎ1 < 1). They set event
rates under the null hypothesis so that the the weighted average event rate
is the same under the null and alternate hypotheses:

𝜆00 = 𝜆01 = �̄� = (1 − 𝜉)𝜆10 + 𝜉𝜆11. (5.1)

The apparent intent of this is to equalize the variance for the log hazard ratio
under null and alternative hypotheses; this will not be exactly the case. We let
𝛿 represent an indicator that an uncensored event is observed for a patient
in a specified treatment group given enrollment, event rate, and dropout
rate assumptions. The Lachin and Foulkes power equation for proportional
hazards translates in our notation to:

57

58 5 Time-to-event sample size derivation

√
𝑁 ln(ℎ1) = 𝑍𝛼√𝐸 {𝛿|�̄�, 𝜂}−1 (𝜉−1 + (1 − 𝜉)−1)

+ 𝑍𝛽√𝐸 {𝛿|𝜆1, 𝜂}−1 𝜉−1 + 𝐸 {𝛿|𝜆0, 𝜂}−1 (1 − 𝜉)−1
(5.2)

Lachin and Foulkes did not cover any cases other than equality under the null
hypothesis; i.e., the assumed ℎ0 ≠ 1 (i.e., 𝜆00 ≠ 𝜆01). Equation 5.2 generalizes
in this case to

√
𝑁 ln (ℎ1

ℎ0
) = 𝑍𝛼√𝐸 {𝛿|𝜆01, 𝜂1}−1 𝜉−1 + 𝐸 {𝛿|𝜆00, 𝜂0}−1 (1 − 𝜉)−1

+ 𝑍𝛽√𝐸 {𝛿|𝜆11, 𝜂1}−1 𝜉−1 + 𝐸 {𝛿|𝜆10, 𝜂0}−1 (1 − 𝜉)−1
(5.3)

While we have defined null hypothesis assumptions 𝜆00 and 𝜆01 for an expo-
nential distribution, the gsDesign functions nSurv() and gsSurv() extend
the approach above in an analogous fashion to piecewise exponential failure
and dropout rates with a common proportional hazard ratio across piecewise
intervals.

For a fixed sample size with default arguments, we have:
library(gsDesign)

fixed_design <- nSurv()
fixed_design
#> Fixed design, two-arm trial with time-to-event
#> outcome (Lachin and Foulkes, 1986).
#> Solving for: Accrual rate
#> Hazard ratio H1/H0=0.6/1
#> Study duration: T=18
#> Accrual duration: 12
#> Min. end-of-study follow-up: minfup=6
#> Expected events (total, H1): 160.4832
#> Expected sample size (total): 250.4492
#> Accrual rates:
#> Stratum 1
#> 0-12 20.8708
#> Control event rates (H1):
#> Stratum 1
#> 0-Inf 0.1155
#> Censoring rates:
#> Stratum 1
#> 0-Inf 0
#> Power: 100*(1-beta)=90%

5 Time-to-event sample size derivation 59

#> Type I error (1-sided): 100*alpha=2.5%
#> Equal randomization: ratio=1

This intentionally does not round up, so the user needs to round the num-
ber of events and sample size up. For gsSurv(), this rounding can be done
automatically:
gs_design <- gsSurv() |> toInteger()
gs_design |> gsBoundSummary()
#> Analysis Value Efficacy Futility
#> IA 1: 33% Z 3.0139 -0.2458
#> N: 190 p (1-sided) 0.0013 0.5971
#> Events: 57 ~HR at bound 0.4500 1.0673
#> Month: 8 P(Cross) if HR=1 0.0013 0.4029
#> P(Cross) if HR=0.6 0.1396 0.0147
#> IA 2: 66% Z 2.5528 0.9301
#> N: 268 p (1-sided) 0.0053 0.1762
#> Events: 114 ~HR at bound 0.6199 0.8401
#> Month: 13 P(Cross) if HR=1 0.0061 0.8320
#> P(Cross) if HR=0.6 0.5769 0.0433
#> Final Z 1.9988 1.9988
#> N: 268 p (1-sided) 0.0228 0.0228
#> Events: 172 ~HR at bound 0.7373 0.7373
#> Month: 18 P(Cross) if HR=1 0.0233 0.9767
#> P(Cross) if HR=0.6 0.9005 0.0995

A textual summary is also available:
summary(gs_design)

#> Asymmetric two-sided group sequential design with
#> non-binding futility bound, 3 analyses, time-to-event
#> outcome with sample size 268 and 172 events required, 90
#> percent power, 2.5 percent (1-sided) Type I error to detect
#> a hazard ratio of 0.6. Enrollment and total study durations
#> are assumed to be 12 and 18 months, respectively. Efficacy
#> bounds derived using a Hwang-Shih-DeCani spending function
#> with gamma = -4. Futility bounds derived using a
#> Hwang-Shih-DeCani spending function with gamma = -2.

All the assumptions laid out in this text can be changed as documented in
the help file.

Chapter 6

Deriving group sequential designs

There are many ways to specify a group sequential design to obtain a desired
power and Type I error. For planning purposes, the number, 𝑘 and relative
timing 0 < 𝑡1 < ⋯ < 𝑡𝑘 = 1 of interim analyses are fixed. Given these
values, there are two general approaches to deriving boundaries for a group
sequential trial:

• The error spending approach. Specify boundary crossing probabilities
at each analysis and derive a sample size and boundary values based on
these values. This is most commonly done with the error spending function
approach proposed by Lan and DeMets [Lan and DeMets, 1983], which is
discussed at some length in Chapter 8. We present this method in brief in
Section 6.1 and follow this with simple examples.

• The boundary family approach. Specify how big boundary values
should be relative to each other and adjust these relative values by a
constant multiple to control overall error rates. Sample size adjustment
is also part of this derivation. The commonly applied boundary family
approach uses the Wang-Tsiatis [Wang and Tsiatis, 1987] family which in-
cludes bounds by Pocock [Pocock, 1977] and O’Brien and Fleming [O’Brien
and Fleming, 1979]. This will be discussed in Section 6.2.

6.1 Boundary derivation using boundary crossing
probabilities

6.1.1 Types of error probabilities used: test.type

Before starting a discussion of spending functions, different methods of com-
puting Type I error are discussed. Boundary crossing probabilities for up-
per bounds may be specified to gsDesign() using either 𝛼𝑖(0) or 𝛼+

𝑖 (0),

61

62 6 Deriving group sequential designs

𝑖 = 1, 2, … , 𝑘. In the first case, it is assumed that a trial stops when either a
lower or upper bound is crossed and the only Type I error occurs when the
first time a boundary is crossed it is an upper bound. In the second case, it is
assumed that a lower bound may be ignored if crossed and the Type I error is
the probability of ever crossing an upper bound if the trial is never stopped
for crossing a lower bound. As we have seen, the difference between these
boundary crossing probabilities may be small. The differences can be mean-
ingful, however, when aggressive futility bounds are employed to require, say,
an early positive treatment effect trend.

For lower bounds, either 𝛽𝑖(𝛿) or 𝛽𝑖(0), 𝑖 = 1, 2, … , 𝑘, may be specified.

Sample size and boundaries that have appropriate boundary crossing prob-
abilities and power are derived numerically using computational methods
given in detail in Chapter 19 of Jennison and Turnbull [Jennison and Turn-
bull, 2000]. The gsDesign() parameter test.type specifies which boundary
crossing probabilities are used as outlined in Table 6.1.

Table 6.1: Boundary crossing probabilities used to set boundaries in
gsDesign() by test.type.

test.type Upper bound Lower bound
1 𝛼+

𝑖 (0) None
2 𝛼(0) 𝛽𝑖(0)
3 𝛼𝑖(0) 𝛽𝑖(𝛿)
4 𝛼+

𝑖 (0) 𝛽𝑖(𝛿)
5 𝛼(0) 𝛽𝑖(0)
6 𝛼+(0) 𝛽𝑖(0)

For test.type = 1, 2 and 5, boundaries can be computed in a single step just
by knowing the cumulative proportion of the final planned statistical infor-
mation (sample size/number of events) at each analysis that is specified using
the timing input variable. For test.type = 6, the upper and lower bound-
aries are computed separately and independently using these same methods.
For test.type = 1, 2, 5 or 6, the total sample size is then set to obtain
the desired power under the alternative hypothesis by using a root finding
algorithm.

For test.type = 3 and 4, sample size and bounds are set simultaneously
using an iterative algorithm. This computation is slightly more complex than
the above. This does not make any noticeable difference in normal use of
the gsDesign(). However, for user-developed routines that require repeated
calls to gsDesign() (e.g., finding an optimal design), there may be noticeably
slower performance when test.type = 3 or 4 is used.

6.1 Boundary derivation using boundary crossing probabilities 63

6.1.2 Specifying boundary crossing probabilities in
gsDesign()

We use the CAPTURE example, working with the desired 80% power
(𝛽 = 0.2) to demonstrate deriving bounds with specified boundary crossing
probabilities. For simplicity, we will let 𝛼+

𝑖 (0) = 0.025/4 and 𝛽𝑖(𝛿) = 0.2/4,
𝑖 = 1, 2, 3, 4. Setting the gsDesign() parameters sfu and sfl to sfLinear,
the vector p below is used to equally allocate the boundary crossing proba-
bilities for each analysis. Note that sfLinear() requires an even number of
elements in param. The first half specify the timepoints using an increasing
set of values strictly between 0 and 1 to indicate the proportion of informa-
tion at which the spending function is specified. The second half specify the
proportion of total error spending at each of these points. (Aside: those in-
terested in plotting with special characters note the special handling of the
character + in the argument main to plot().)
library(gsDesign)

Cumulative proportion of spending planned at each analysis.
In this case, this is also proportion of final observations
at each interim.
p <- c(0.25, 0.5, 0.75)
t <- c(0.25, 0.5, 0.75)
Cumulative spending intended at each analysis
(for illustration)
p * 0.025
#> [1] 0.00625 0.01250 0.01875

n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)
x <- gsDesign(
k = 4,
n.fix = n.fix,
beta = 0.2,
sfu = sfLinear,
sfupar = c(t, p),
sfl = sfLinear,
sflpar = c(t, p)

)
plot(
x,
main = expression(
paste(
"Equal ",
alpha[i]^{
"+"

}, (0),

64 6 Deriving group sequential designs

" and ",
beta[i](delta),
" for each analysis"

)
)

)

2.5
2.41

2.32
2.24

−0.05

0.82

1.53

2.24

N=447 N=893 N=1340 N=1786

0.0

0.5

1.0

1.5

2.0

2.5

400 800 1200 1600
Sample size

N
or

m
al

 c
rit

ic
al

 v
al

ue

Bound

Lower

Upper

Equal αi
+(0) and βi(δ) for each analysis

x
#> Asymmetric two-sided group sequential design with
#> 80 % power and 2.5 % Type I Error.
#> Upper bound spending computations assume
#> trial continues if lower bound is crossed.
#>
#> ----Lower bounds---- ----Upper bounds-----
#> Analysis N Z Nominal p Spend+ Z Nominal p Spend++
#> 1 447 -0.05 0.4816 0.05 2.50 0.0063 0.0063
#> 2 893 0.82 0.7953 0.05 2.41 0.0080 0.0063
#> 3 1340 1.53 0.9370 0.05 2.32 0.0101 0.0063
#> 4 1786 2.24 0.9876 0.05 2.24 0.0124 0.0062
#> Total 0.2000 0.0250
#> + lower bound beta spending (under H1):
#> Piecewise linear spending function with line points = 0.25, line points = 0.5, line points = 0.75, line points = 0.25, line points = 0.5, line points = 0.75.
#> ++ alpha spending:
#> Piecewise linear spending function with line points = 0.25, line points = 0.5, line points = 0.75, line points = 0.25, line points = 0.5, line points = 0.75.
#>
#> Boundary crossing probabilities and expected sample size

6.1 Boundary derivation using boundary crossing probabilities 65

#> assume any cross stops the trial
#>
#> Upper boundary (power or Type I Error)
#> Analysis
#> Theta 1 2 3 4 Total E{N}
#> 0.0000 0.0063 0.0062 0.0059 0.0042 0.0225 769.7
#> 0.0757 0.1843 0.2805 0.2253 0.1100 0.8000 1054.1
#>
#> Lower boundary (futility or Type II Error)
#> Analysis
#> Theta 1 2 3 4 Total
#> 0.0000 0.4816 0.3321 0.1299 0.0339 0.9775
#> 0.0757 0.0500 0.0500 0.0500 0.0500 0.2000

The printed output from the above is shown below and a plot of the derived
boundaries is in Figure below. The columns labeled Spend+ and Spend++
show the values 𝛽𝑖(𝛿) and 𝛼𝑖(0), respectively, are equal for each analysis,
𝑖 = 1, 2, 3, 4. The nominal 𝑝-values for the upper bound increase and thus
the bounds themselves decrease for each analysis. That equal error proba-
bilities results in unequal bounds is because of the correlation between the
test statistics used for analysis that was indicated in Section 2.1. Note that
the requirement of 1372 patients for the fixed design has now increased to
a maximum sample size of 1786 which is an inflation of 30%. On the other
hand, the expected number of patients when a boundary is crossed is 770 un-
der the assumption of no treatment difference and 1054 under the alternative
hypothesis of a 15% event rate in the control group and 10% in the exper-
imental group. Thus, this redesign seems reasonably effective at controlling
the sample size when the experimental regimen has no underlying benefit.
The nominal 𝛼−level of 0.0124 required for a positive result at the end of the
study is almost exactly half that of the overall 0.025 for the study. We will
propose other designs that will not require such a small final nominal 𝛼 by
setting higher early efficacy bounds.

Now we display piecewise linear spending functions. The plot resulting from
the code below is displayed below.
Cumulative proportion of spending planned at each analysis
Now use a piecewise linear spending
p <- c(0.05, 0.2, 0.5)
p2 <- c(0.6, 0.8, 0.85)
x <- gsDesign(
k = 4,
n.fix = n.fix,
beta = 0.2,
sfu = sfLinear,
sfupar = c(t, p),

66 6 Deriving group sequential designs

sfl = sfLinear,
sflpar = c(t, p2)

)
plot(x, plottype = "sf", main = "Piecewise linear spending")

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of total sample size

P
ro

po
rt

io
n

of
 s

pe
nd

in
g

Spending

α

β

Piecewise linear spending

6.2 Deriving group sequential designs using boundary
families

The second method of setting boundaries uses the relative 𝑧-value for a design
cutoff at each interim analysis, 𝑐𝑖 > 0, 𝑖 = 1, 2, … , 𝑘. We define vectors
t ≡ (𝑡1, 𝑡2, … , 𝑡𝑘) and c ≡ (𝑐1, 𝑐2, … , 𝑐𝑘). For 2-sided testing, Wang and
Tsiatis [Wang and Tsiatis, 1987] defined the boundary function

−𝑎𝑖 = 𝑏𝑖 = 𝐶(t, c)𝑐𝑖

where the constant 𝐶(t, c) > 0 is chosen to appropriately control Type I
error.

Wang and Tsiatis [Wang and Tsiatis, 1987] specifically defined the boundary
function family

𝑔(𝑡; Δ) = 𝐶(t; Δ)𝑡Δ−0.5.

6.2 Deriving group sequential designs using boundary families 67

For 𝑖 = 1, 2, … , 𝑘, the boundary at analysis 𝑖 are given by

−𝑎𝑖 = 𝑏𝑖 = 𝐶(t; Δ)𝑡Δ−0.5
𝑖 .

For 2-sided testing, note that for Δ = 0.5 the boundary values are all equal.
Thus, this is equivalent to a Pocock [Pocock, 1977] boundary when analyses
are equally spaced. The value Δ = 0 generates O’Brien-Fleming bounds
[O’Brien and Fleming, 1979].

Pampallona and Tsiatis [Pampallona and Tsiatis, 1994] derived a related
method of using boundary families to set asymmetric bounds; this is not
currently implemented in gsDesign(). Using constants 𝑐′

𝑖 > 0, 𝑖 = 1, 2, … , 𝑘
and a constant 𝐶′(t; Ik) that along with 𝐼𝑘 is used to appropriately control
Type II error, they set

𝑎𝑖 = 𝛿√𝑡𝑖 − 𝐶′(t)𝑐′
𝑖.

O’Brien-Fleming, Pocock, or Wang-Tsiatis are normally used with equally-
spaced analyses. They are used only with one-sided (test.type=1) and sym-
metric two-sided (test.type=2) designs. We will use the CAPTURE ex-
ample, again with 80% power rather than the default of 90%. Notice that
this requires specifying beta = 0.2 in both nBinomial() and gsDesign().
O’Brien-Fleming, Pocock, or Wang-Tsiatis (parameter of 0.15) bounds for
equally space analyses are generated using the parameters sfu and sfupar
below. If you print the Pocock design (xPocock), you will see that the up-
per bounds are all equal and that the upper boundary crossing values 𝛼𝑖(0)
printed in the Spend column decrease from 0.0091 for the first analysis to
0.0041 for the final analysis.
n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)
xOF <- gsDesign(
k = 4,
test.type = 2,
n.fix = n.fix,
sfu = "OF",
beta = 0.2

)
xPocock <- gsDesign(
k = 4,
test.type = 2,
n.fix = n.fix,
sfu = "Pocock",
beta = 0.2

)
xWT <- gsDesign(

68 6 Deriving group sequential designs

k = 4,
test.type = 2,
n.fix = n.fix,
sfu = "WT",
sfupar = 0.15,
beta = 0.2

)

The resulting sample sizes for these designs can be computed using
nOF <- 2 * ceiling(xOF$n.I[4] / 2)
nPocock <- 2 * ceiling(xPocock$n.I[4] / 2)
nWT <- 2 * ceiling(xWT$n.I[4] / 2)

We now present an example of how is fairly simple to produce custom plots us-
ing gsDesign() output and standard R plotting functions. The resulting out-
put is in Figure below. If you are not familiar with R plotting, executing the
following statements one at a time may be instructive. The call help(plot)
and its ”See also” links (especially par) can be used to find explanations of
parameters below. The legend call below particularly demonstrates a nice
strength of R for printing Greek characters and subscripts in plots.
plot(
xOF$n.I,
xOF$upper$bound,
xlim = c(300, 1800),
ylim = c(1.5, 4.5),
pch = "o",
cex = 1.5,
lwd = 2,
type = "b",
xlab = "N",
ylab = "Normal critical value (upper bounds)",
main = "N and upper bounds with Wang-Tsiatis designs"

)
lines(xPocock$n.I, xPocock$upper$bound, lty = 3, lwd = 2)
points(xPocock$n.I, xPocock$upper$bound, pch = "p", cex = 1.5)
lines(xWT$n.I, xWT$upper$bound, lty = 2, lwd = 2)
points(xWT$n.I, xWT$upper$bound, pch = "x", cex = 1.5)
legend(
x = c(600, 1825),
y = c(3.4, 4.5),
lty = c(1, 2, 3),
lwd = 2,
pch = c("o", "x", "p"),
cex = 1.5,

6.2 Deriving group sequential designs using boundary families 69

legend = c(
expression(paste(
Delta, "=0.0, ", N[4],
"=1404, (O'Brien-Fleming)"

)),
c(
expression(paste(
Delta, "=0.15, ", N[4], "=1430"

)),
c(expression(paste(
Delta, "=0.50, ", N[4], "=1650, (Pocock)"

)))
)

)
)

70 6 Deriving group sequential designs

o

o

o

o

500 1000 1500

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

N and upper bounds with Wang−Tsiatis designs

N

N
or

m
al

 c
rit

ic
al

 v
al

ue
 (

up
pe

r
bo

un
ds

)

p p p p

x

x

x

x

o
x
p

∆=0.0, N4=1404, (O'Brien−Fleming)
∆=0.15, N4=1430
∆=0.50, N4=1650, (Pocock)

Figure 6.1

Figure 6.1 shows how the upper bounds and sample size change as Δ changes
for Wang-Tsiatis bounds. For the O’Brien-Fleming design, the final sample
size is only inflated to 1402 from the 1372 required for a fixed design. The
relatively aggressive early bounds for the the Pocock design result in sample
size inflation to 1650. This design is not frequently used because of the rela-
tively low bounds at early analyses and the substantial sample size inflation
required to maintain the desired power. Since the nominal 𝑝-value required
for stopping at the initial analysis for the O’Brien-Fleming design is 0.00005
(2-sided), an intermediate design with Δ = 0.15 might be of some interest.
This has a relatively small sample size inflation to 1430 in order to main-
tain power and the nominal 𝑝-value required to stop the trial at the first
interim analysis is 0.0008 (2-sided). Examine the boundary crossing probabil-
ities by reviewing, for example, xOF$upper$spend. Also consider reviewing

6.2 Deriving group sequential designs using boundary families 71

plot(xWT, plottype = 3) to see the observed treatment effect required at
each analysis to cross a boundary.

Chapter 7

Other gsDesign() parameters

7.1 Setting Type I error and power

Type I error as input to gsDesign() is always one-sided and is set through
the parameter alpha. Type II error (1-power) is set in the parameter beta.
A standard design modified to have Type I error of 0.05 and Type II error
of 0.2 (80% power) rather than the default of 0.025 Type I and 0.1 Type II
error is produced with the command
library(gsDesign)

x <- gsDesign(alpha = 0.05, beta = 0.2)

7.2 Number and timing of analyses

The number of analyses is set in gsDesign() through the parameter k>1,
which has a default of 3. The default for timing of analyses is to have them
equally-spaced, which is indicated by the default value of timing=1. This
will often not be feasible or desired due to logistical or other reasons. The
parameter timing can be input as a vector of length k or k-1 where 0 <
timing[1] < timing[2] < … < timing[k] = 1. It is optional to specify
timing[k] since it is always 1. The values in timing set the proportion of
statistical information available for the data analyzed at each interim anal-
ysis. The statistical information is generally proportional to the number of
observations analyzed or, for survival analysis, the number of time-to-event
endpoints that have been observed. The following compares upper bounds,
number of observations at each analysis, and average number of observations
at the analysis where a boundary is crossed for the default design (stored in
x) versus an alternative analyzing after 25%and 50% of observations (stored

73

74 7 Other gsDesign() parameters

in xt) for the CAPTURE example. You can see that the upper bounds are
more stringent when analyses are done earlier in the trial.
n.fix <- nBinomial(p1 = 0.15, p2 = 0.1)
x <- gsDesign(n.fix = n.fix)
2 * ceiling(x$n.I / 2)
#> [1] 656 1310 1964

x$upper$bound
#> [1] 3.010739 2.546531 1.999226

x$en
#> [1] 1146.391 1451.709

xt <- gsDesign(n.fix = n.fix, timing = c(0.25, 0.5))
2 * ceiling(xt$n.I / 2)
#> [1] 482 964 1926

xt$upper$bound
#> [1] 3.155373 2.818347 1.983563

xt$en
#> [1] 1185.173 1547.649

Comparing the designs, we see that the average sample number is lower for
the default design with evenly spaced analyses compared to the design ana-
lyzing after 25% and 50% of observations. This is true both under the null
hypothesis (1146 versus 1185) and the alternate hypothesis (1452 versus 1548)
in spite of a lower maximum sample size (1926 versus 1964) for the latter de-
sign. To understand this further we look first at the probability of crossing
the lower bound at each analysis for each design below. The columns of the
matrices printed correspond to the theta values under the null and alter-
nate hypotheses, respectively, while rows correspond to the analyses. Thus,
the default design has probability of 41% of crossing the lower bound at the
first interim analysis compared to 25% for the design with first analysis at
25% of observations. By examining these probabilities as well as correspond-
ing upper boundary crossing probabilities (e.g., x$upper$prob) we see that
by moving analyses earlier without changing spending functions we have de-
creased the probability of crossing an interim boundary, which explains the
smaller expected sample size for the default design which uses later interim
analyses.
x$lower$prob
#> [,1] [,2]
#> [1,] 0.4056598 0.01483371
#> [2,] 0.4290045 0.02889212
#> [3,] 0.1420312 0.05627417

7.3 Standardized treatment effect: delta 75

xt$lower$prob
#> [,1] [,2]
#> [1,] 0.2546094 0.01015363
#> [2,] 0.3839157 0.01674051
#> [3,] 0.3375615 0.07310586

7.3 Standardized treatment effect: delta

7.3.1 Normally distributed data

The “usual” formula for sample size for a fixed design is

𝑛 = (𝑍1−𝛼 + 𝑍1−𝛽
𝛿)

2
. (7.1)

This formula originates from testing the mean of a sample of normal random
variables with variance 1. The null hypothesis is that the true mean 𝜃 equals 0,
while the alternate hypothesis is that 𝜃 = 𝛿. The distribution of the mean of
𝑛 observations �̄�𝑛 follows a normal distribution with mean 𝛿 and standard
deviation 1/𝑛 (i.e., N(𝛿,1/𝑛)). Assuming 𝛿 > 0, the standard statistic for
testing this is 𝑍𝑛 = √𝑛�̄�𝑛 ∼N(

√𝑛𝛿, 1) which rejects the hypothesis that the
true mean is 0 if 𝑍𝑛 > 𝑍1−𝛼. The null hypothesis is rejected with probability
𝛼 when the null hypothesis is true (Type I error), while the probability of
rejecting under the alternate hypothesis (power or one minus Type II error)
is

Φ(𝑍1−𝛼 − √𝑛𝛿). (7.2)

By fixing this probability as 1 − 𝛽 and solving for 𝑛, Equation 7.1 is derived.

Assume a set of patients is evaluated at baseline for a measure of interest,
then treated with a therapy and subsequently measured for a change from
baseline. Assume the within subject variance for the change from baseline
is 1. Suppose 𝛿 = 0.1. The default group sequential design can be obtained
for such a study using the call gsDesign(delta = 0.1), yielding a planned
maximum sample size of 1125.

76 7 Other gsDesign() parameters

7.3.2 Time to event data

Equation 7.1 and Equation 7.2 are used as approximations for many situa-
tions where test statistics are approximated well by the normal distribution
as 𝑛 gets large. A useful example of this approximation is comparing sur-
vival distributions for two groups under the assumption that the hazard rate
(“instantaneous failure rate”) for the control group (𝜆1(𝑡)) and experimental
group (𝜆2(𝑡)) for any time 𝑡 > 0 are proportional as expressed by

𝜆2(𝑡) = 𝑒−𝛾𝜆1(𝑡).

We have used −𝛾 in the exponent so that a positive value of 𝛾 indicates lower
risk in the experimental treatment group. The value 𝑒−𝛾 will be referred to
as the hazard ratio and 𝛾 as minus the log hazard ratio.

Note that when 𝛾 = 0 there is no difference in the hazard rates between
treatment groups. A common test statistic for the null hypothesis that 𝛾 = 0
is the logrank test. We will denote this by 𝑇 (𝑑) where 𝑑 indicates the number
of events observed in the combined treatment groups. A reasonably good
approximation for its distribution is

𝑇 (𝑑) ∼ N(𝛾 × 𝑉 (𝑑), 𝑉 (𝑑)).

For equally sized treatment groups, 𝑉 (𝑑) is approximately 𝑑/4. Thus,

𝑍 = 𝑇 (𝑑)2/
√

𝑑 ∼ N(
√

𝑑𝛾/2, 1).

For the formulation from Section 2.1 we have 𝜃 = 𝛾/2. If 𝛾 = 𝜇 is the
alternative hypothesis to the null hypothesis 𝛾 = 0, then we have 𝛿 = 𝜇/2. In
fact, Tsiatis [Tsiatis, 1982], Sellke and Siegmund [Sellke and Siegmund, 1983]
and Slud and Wei [Slud and Wei, 1982] have all shown that group sequential
theory may be applied to censored survival data using this distributional
assumption; this is also discussed by Jennison and Turnbull [Jennison and
Turnbull, 2000]. If we assume there are 𝑘 analyses after 𝑑1 < 𝑑2 < … < 𝑑𝑘
events and let ℐ𝑖 = 𝑑𝑖/4, 𝑖 = 1, 2, … , 𝑘 then we may apply the canonical
distribution assumptions from Equation 2.7 and Equation 2.8.

For the cancer trial example in Section 1.6, we assumed 𝑒−𝜇 = 0.7 which
yields 𝛿 = − ln(0.7)/2 = 0.178. Applying Equation 7.1 with 𝛼 = 0.025 and
𝛽 = 0.1 and this value of 𝛿, the number of events required is calculated as 331
compared to 330 calculated previously using the Lachin and Foulkes [Lachin
and Foulkes, 1986] method. We may obtain the default group sequential de-
sign by specifying 𝛿 rather than the fixed design number of events as follows:
gsDesign(delta = -log(0.7) / 2).

7.3 Standardized treatment effect: delta 77

We also apply this distribution theory to the non-inferiority trial for a new
treatment for diabetes. We wish to rule out a hazard ratio of 1.3 for the
experimental group compared to the control group under the assumption that
the risk of cardiovascular events is equal in the two treatment groups. This
implies that our null hypothesis is that 𝛾 = ln(1.3) = 0.262 and the alternate
hypothesis is that 𝛾 = 0. Letting 𝜃 = (𝛾 − ln(1.3))/2 the null hypothesis is
re-framed as 𝜃 = 0 and the alternative as 𝜃 = ln(1.3)/2. The test statistic
𝑍 = (𝑇 (𝑑)−ln(1.3)×𝑑/4)×2/

√
𝑑 is then approximately distributed N(

√
𝑑𝜃, 1).

Substituting 𝛿 = ln(1.3)/2, 𝛼 = 0.025 and 𝛽 = 0.1 in Equation 7.1 we come
up with 𝑑 = 611. This is within 1% of the 617 events suggested in Section 1.8.

Chapter 8

Spending functions

8.1 Spending function definitions

For any given 0 < 𝛼 < 1, we define a non-decreasing function 𝑓(𝑡; 𝛼) for
𝑡 ≥ 0 with 𝛼(0) = 0 and for 𝑡 ≥ 1, 𝑓(𝑡; 𝛼) = 𝛼. For 𝑖 = 1, 2, … , 𝐾, we define
𝑡𝑖 = 𝐼𝑖/𝐼𝐾 and then set 𝛼𝑖(0) through the equation

𝑓(𝑡𝑖; 𝛼) =
𝑖

∑
𝑗=1

𝛼𝑗(0).

We consider a spending function proposed by Lan and DeMets [Lan and
DeMets, 1983] to approximate a Pocock bound.

𝑓(𝑡; 𝛼) = 𝛼 log(1 + (𝑒 − 1)𝑡)

This spending function is implemented in the function sfLDPocock. We again
consider a 2-sided design with equally spaced analyses, 𝑡𝑖 = 𝑖/4, 𝑖 = 1, 2, 3, 4.
The values for 𝛼𝑖(0) are obtained as follows:
library(gsDesign)

sfLDPocock(alpha = 0.025, t = 1:4 / 4)$spend
#> [1] 0.00893435 0.01550286 0.02069972 0.02500000

We will discuss the exact nature of this call to sfLDPocock in Section 8.5
below. We now derive a design for the CAPTURE study using this spending
function
n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)
x <- gsDesign(
k = 4,

79

80 8 Spending functions

test.type = 2,
n.fix = n.fix,
sfu = sfLDPocock,
beta = 0.2

)
cumsum(x$upper$prob[, 1])
#> [1] 0.00893435 0.01550287 0.02069973 0.02500001

The boundary crossing probabilities under the assumption of no treatment
difference are in x$upper$prob[,1] and there cumulative totals are produced
by the above call to cumsum(). Note that these values match those produced
by the call to sfLDPocock above. Next we compare the bounds produced by
this design with the actual Pocock bounds to see they are nearly identical:
xPocock <- gsDesign(
k = 4,
test.type = 2,
n.fix = n.fix,
sfu = "Pocock",
beta = 0.2

)
x$upper$bound
#> [1] 2.368328 2.367524 2.358168 2.350030

xPocock$upper$bound
#> [1] 2.361298 2.361298 2.361298 2.361298

The reader may wish to compare the O’Brien-Fleming design presented in
Section 6.2 using the spending function sfLDOF, which implements a spending
function proposed by Lan and DeMets [Lan and DeMets, 1983] to approxi-
mate this design:

𝛼𝑖(𝑡) = 2 (1 − Φ (Φ−1(𝛼/2)√
𝑡))

You will see that this approximation is not as good as the Pocock bound
approximation.

8.2 Spending function families

The function 𝑓(𝑡; 𝛼) may be generalized to a family 𝑓(𝑡; 𝛼, 𝛾) of spending
functions using one or more parameters. For instance, the default Hwang-
Shih-DeCani spending function family is defined for 0 ≤ 𝑡 ≤ 1 and any real
𝛾 by

8.3 Spending function basics 81

𝑓(𝑡; 𝛼, 𝛾) = 𝛼 1−exp(−𝛾𝑡)
1−exp(−𝛾) , 𝛾 ≠ 0

𝛼𝑡, 𝛾 = 0

The boundary crossing probabilities 𝛼+
𝑖 (𝜃) and 𝛽𝑖(𝜃) may be defined in a

similar fashion, 𝑖 = 1, 2, … , 𝐾 with the same or different spending functions
𝑓 where:

𝑓(𝑡𝑖; 𝛼) =
𝑖

∑
𝑗=1

𝛼+
𝑗 (0) (8.1)

𝑓(𝑡𝑖; 𝛽(𝜃)) =
𝑖

∑
𝑗=1

𝛽𝑗(𝜃) (8.2)

The argument test.type in gsDesign() provides two options for how to use
𝑓(𝑡𝑖; 𝛽(𝜃)) to set lower bounds. For test.type=2, 5 and 6, lower boundary
values are set under the null hypothesis by specifying 𝛽(𝑡; 0), 0 ≤ 𝑡. For
test.type=3 and 4, we compute lower boundary values under the alternative
hypothesis by specifying 𝛽(𝑡; 𝛿), 0 ≤ 𝑡. 𝛽(𝑡; 𝛿) is referred to as the 𝛽-spending
function and the value 𝛽𝑖(𝛿) is referred to as the amount of 𝛽 (Type II error
rate) spent at analysis 𝑖, 1 ≤ 𝑖 ≤ 𝐾.

Standard published spending functions commonly used for group sequential
design are included as part of the gsDesign package. Several ‘new’ spending
functions are included that are of potential interest. Users can also write their
own spending functions to pass directly to gsDesign(). Available spending
functions and the syntax for writing a new spending function are documented
here. We begin here with simple examples of how to apply standard spend-
ing functions in calls to gsDesign(). This may be as far as many readers
may want to read. However, for those interested in more esoteric spending
functions, full documentation of the extensive spending function capabilities
available is included. Examples for each type of spending function in the
package are included in the online help documentation.

8.3 Spending function basics

The parameters sfu and sfl are used to set spending functions for the upper
and lower bounds, respectively, each having a default value of sfHSD, the
Hwang-Shih-DeCani spending function. The default parameter for the upper
bound is 𝛾 = −4 to produce a conservative, O’Brien-Fleming-like bound. The

82 8 Spending functions

default for the lower bound is 𝛾 = −2, a less conservative bound. This design
was presented at some length in Section 4.1.

To change these to −3 (less conservative than an O’Brien-Fleming bound)
and 1 (an aggressive Pocock-like bound), respectively, requires the parame-
ter sfupar for the upper bound and sflpar for the lower bound: Next we
consider some simple alternatives to the default spending function param-
eters. The Kim-DeMets function, sfPower(), with upper bound parameter
𝜌 = 3 (a conservative, O’Brien-Fleming-like bound) and lower bound pa-
rameter 𝜌 = 0.75 (an aggressive, Pocock-like bound) requires resetting the
upper bound spending function sfu and the lower bound spending function
sfl. In the first code line following, we replace lower and upper spending
function parameters with 1 and −2, respectively; the default Hwang-Shih-
DeCani spending function family is still used. In the second line, we specify a
Kim-DeMets (power) spending function for both the lower bound (with the
parameters sfl=sfPower and sflpar=2) and the upper bounds (with the
parameters sfu=sfPower and sfupar=3). Then we compare bounds from the
three designs. Bounds for the power spending function design are quite com-
parable to the default design. Generally, choosing between these two spending
function families is somewhat arbitrary. The alternate Hwang-Shih-DeCani
design uses more aggressive stopping boundaries. The last lines below show
that sample size inflation from a fixed design is about 25% for the the design
with more aggressive stopping boundaries compared to about 7% for each of
the other designs.
x <- gsDesign()
xHSDalt <- gsDesign(
sflpar = 1,
sfupar = -2

)
xKD <- gsDesign(
sfl = sfPower,
sflpar = 2,
sfu = sfPower,
sfupar = 3

)
x$upper$bound
#> [1] 3.010739 2.546531 1.999226

xHSDalt$upper$bound
#> [1] 2.677524 2.385418 2.063740

xKD$upper$bound
#> [1] 3.113017 2.461933 2.008705

x$lower$bound
#> [1] -0.2387240 0.9410673 1.9992264

8.3 Spending function basics 83

xHSDalt$lower$bound
#> [1] 0.3989131 1.3302942 2.0637399

xKD$lower$bound
#> [1] -0.3497490 0.9822542 2.0087052

x$n.I[3]
#> [1] 1.069883

xHSDalt$n.I[3]
#> [1] 1.254268

xKD$n.I[3]
#> [1] 1.071011

Following is example code to plot Hwang-Shih-DeCani spending functions for
three values of the 𝛾 parameter. The first two 𝛾 values are the defaults for
upper bound spending (𝛾 = −4; a conservative bound somewhat similar to
an O’Brien-Fleming bound) and lower bound spending (𝛾 = −2; a less con-
servative bound). The third (𝛾 = 1) is included as it approximates a Pocock
stopping rule; see Hwang, Shih and DeCani [Hwang et al., 1990]. The Hwang-
Shih-DeCani spending function class implemented in the function sfHSD()
may be sufficient for designing many clinical trials without considering the
other spending function forms available in this package. The three parameters
in the calls to sfHSD() below are the total Type I error, values for which the
spending function is evaluated (and later plotted), and the 𝛾 parameter for
the Hwang-Shih-DeCani design. The code below yields the plot in Figure 8.1
(note the typesetting of Greek characters!).
plot(0:100 / 100, sfHSD(0.025, 0:100 / 100, -4)$spend,
type = "l", lwd = 2,
xlab = "Proportion of information",
ylab = expression(paste("Cumulative \ ", alpha, "-spending")),
main = "Hwang-Shih-DeCani Spending Functions"

)
lines(
0:100 / 100,
sfHSD(0.025, 0:100 / 100, -2)$spend,
lty = 2,
lwd = 2

)
lines(
0:100 / 100,
sfHSD(0.025, 0:100 / 100, 1)$spend,
lty = 3,
lwd = 2

)

84 8 Spending functions

legend(
x = c(0.0, 0.27), y = 0.025 * c(0.8, 1), lty = 1:3, lwd = 2,
legend = c(
expression(paste(gamma, " = -4")),
expression(paste(gamma, " = -2")),
expression(paste(gamma, " = 1"))

)
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Hwang−Shih−DeCani Spending Functions

Proportion of information

C
um

ul
at

iv
e

 α
−

sp
en

di
ng

γ = −4
γ = −2
γ = 1

Figure 8.1

Similarly, Jennison and Turnbull [Jennison and Turnbull, 2000], suggest that
the Kim-DeMets spending function is flexible enough to suit most purposes.
To compare the Kim-DeMets family with the Hwang-Shih-DeCani family

8.3 Spending function basics 85

just demonstrated, substitute sfPower() instead of sfHSD(); use parameter
values 3, 2 and 0.75 to replace the values −4,−2, and 1 in the code shown
above:
plot(0:100 / 100, sfPower(0.025, 0:100 / 100, 3)$spend,
type = "l", lwd = 2,
xlab = "Proportion of information",
ylab = expression(paste("Cumulative \ ", alpha, "-spending")),
main = "Kim-DeMets Spending Functions"

)
lines(
0:100 / 100,
sfPower(0.025, 0:100 / 100, 2)$spend,
lty = 2,
lwd = 2

)
lines(
0:100 / 100,
sfPower(0.025, 0:100 / 100, 0.75)$spend,
lty = 3,
lwd = 2

)
legend(
x = c(0.0, 0.27), y = 0.025 * c(0.8, 1), lty = 1:3, lwd = 2,
legend = c(
expression(paste(gamma, " = 3")),
expression(paste(gamma, " = 2")),
expression(paste(gamma, " = 0.75"))

)
)

86 8 Spending functions

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Kim−DeMets Spending Functions

Proportion of information

C
um

ul
at

iv
e

 α
−

sp
en

di
ng

γ = 3
γ = 2
γ = 0.75

Figure 8.2

8.4 Resetting timing of analyses

When designed with a spending function, the timing and number of analyses
may be altered during the course of the trial. This is very easily handled in
the gsDesign() routine using the input arguments n.I and maxn.IPlan. We
demonstrate this by example. Suppose a trial was originally designed with
the call:
x <- gsDesign(k = 5, n.fix = 800)
x$upper$bound
#> [1] 3.252668 2.986046 2.691657 2.373666 2.025321

8.4 Resetting timing of analyses 87

x$n.I
#> [1] 176.21 352.42 528.63 704.84 881.05

The second and third lines above show the planned upper bounds and sample
sizes at analyses. Suppose that when executed the final interim was skipped,
the first 2 interims were completed on time, the third interim was completed
at 575 patients (instead of 529 as originally planned), the fourth interim was
skipped, and the final analysis was performed after 875 patients (instead
of after 882 as originally planned). The boundaries for the analyses can be
obtained as follows:
gsDesign(
k = 4,
n.fix = 800,
n.I = c(177, 353, 575, 875),
maxn.IPlan = x$n.I[x$k]

)
#> Asymmetric two-sided group sequential design with
#> 90 % power and 2.5 % Type I Error.
#> Upper bound spending computations assume
#> trial continues if lower bound is crossed.
#>
#> ----Lower bounds---- ----Upper bounds-----
#> Analysis N Z Nominal p Spend+ Z Nominal p Spend++
#> 1 177 -0.90 0.1851 0.0077 3.25 0.0006 0.0006
#> 2 353 -0.03 0.4863 0.0115 2.99 0.0014 0.0013
#> 3 575 0.90 0.8149 0.0229 2.59 0.0048 0.0040
#> 4 875 2.01 0.9779 0.0563 2.01 0.0221 0.0184
#> Total 0.0984 0.0243
#> + lower bound beta spending (under H1):
#> Hwang-Shih-DeCani spending function with gamma = -2.
#> ++ alpha spending:
#> Hwang-Shih-DeCani spending function with gamma = -4.
#>
#> Boundary crossing probabilities and expected sample size
#> assume any cross stops the trial
#>
#> Upper boundary (power or Type I Error)
#> Analysis
#> Theta 1 2 3 4 Total E{N}
#> 0.0000 0.0006 0.0013 0.0040 0.0168 0.0227 480.1
#> 0.1146 0.0422 0.1683 0.3601 0.3323 0.9028 631.5
#>
#> Lower boundary (futility or Type II Error)
#> Analysis

88 8 Spending functions

#> Theta 1 2 3 4 Total
#> 0.0000 0.1851 0.3197 0.3219 0.1507 0.9773
#> 0.1146 0.0077 0.0115 0.0229 0.0551 0.0972

This design now has slightly higher power (90.4%) than the originally planned
90%. This is because the final boundary was lowered relative to the original
plan when the 𝛼-spending planned for the fourth interim was saved for the
final analysis by skipping the final interim. Note that all of the arguments
for the original design must be supplied when the study is re-designed—in
addition to adding n.I, which may have the same number, fewer, or more
interim analyses compared to the original plan. If the sample size for the
final analysis is changed, maxn.IPlan should be passed in as the original
final sample size in order to appropriately assign 𝛼- and 𝛽-spending for the
interim analyses.

8.5 Advanced spending function details

8.5.1 Spending functions as arguments

Except for the ”OF”, ”Pocock” and ”WT” examples given in Section 6.2,
a spending function passed to gsDesign() through the arguments (upper
bound) and (lower bound) must have the following calling sequence:
sfname(alpha, t, param)

where sfname is an arbitrary name for a spending function available from the
package or written by the user. The arguments are as follows:

• alpha: a real value (0 < alpha < 1). The total error spending for the
boundary to be determined. This would be replaced with the following
values from a call to gsDesign(): alpha for the upper bound, and either
beta (for test.type = 3 or 4) or astar (for test.type = 5 or 6) for the
lower bound.

• t: a vector of arbitrary length 𝑚 of real values, 0 ≤ 𝑡1 < 𝑡2 < … 𝑡𝑚 ≤
1. Specifies the proportion of spending for which values of the spending
function are to be computed.

• param: for all cases here, this is either a real value or a vector of real values.
One or more parameters that (with the parameter alpha) fully specify the
spending function. This is specified in a call to gsDesign() with sfupar
for the upper bound and sflpar for the lower bound.

The value returned is of the class spendfn which was described in Chapter 8,
The spendfn Class.

8.5 Advanced spending function details 89

The following code and output demonstrate that the default value sfHSD for
the upper and lower spending functions sfu and sfl is a function:
sfHSD
#> function (alpha, t, param)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkScalar(param, "numeric", c(-40, 40))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> t[t > 1] <- 1
#> x <- list(name = "Hwang-Shih-DeCani", param = param, parname = "gamma",
#> sf = sfHSD, spend = if (param == 0) t * alpha else alpha *
#> (1 - exp(-t * param))/(1 - exp(-param)), bound = NULL,
#> prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x55af7f90c6c0>
#> <environment: namespace:gsDesign>

Table 8.1 summarizes many spending functions available in the package. A
basic description of each type of spending function is given. The table begins
with standard spending functions followed by two investigational spending
functions: sfExponential() and sfLogistic(). These spending functions
are discussed further in Section 8.5.2 (investigational spending functions),
but are included here due to their simple forms. The logistic spending func-
tion represented by sfLogistic() has been used in several trials. It repre-
sents a class of two-parameter spending functions that can provide flexibility
not available from one-parameter families. The sfExponential() spending
function is included here as it provides an excellent approximation of an
O’Brien-Fleming design as follows:
gsDesign(test.type = 2, sfu = sfExponential, sfupar = 0.75)
#> Symmetric two-sided group sequential design with
#> 90 % power and 2.5 % Type I Error.
#> Spending computations assume trial stops
#> if a bound is crossed.
#>
#> Sample
#> Size
#> Analysis Ratio* Z Nominal p Spend
#> 1 0.338 3.51 0.0002 0.0002
#> 2 0.676 2.48 0.0066 0.0065
#> 3 1.014 2.00 0.0228 0.0183
#> Total 0.0250
#>

90 8 Spending functions

#> ++ alpha spending:
#> Exponential spending function with nu = 0.75.
#> * Sample size ratio compared to fixed design with no interim
#>
#> Boundary crossing probabilities and expected sample size
#> assume any cross stops the trial
#>
#> Upper boundary (power or Type I Error)
#> Analysis
#> Theta 1 2 3 Total E{N}
#> 0.0000 0.0002 0.0065 0.0183 0.025 1.0097
#> 3.2415 0.0519 0.5242 0.3239 0.900 0.8021
#>
#> Lower boundary (futility or Type II Error)
#> Analysis
#> Theta 1 2 3 Total
#> 0.0000 2e-04 0.0065 0.0183 0.025
#> 3.2415 0e+00 0.0000 0.0000 0.000

Table 8.1: Spending function definitions and parameterizations.

Function
(parameter)

Spending
function
family Functional form

Parameter
(sfupar or
sflpar)

sfHSD
(gamma)

Hwang-Shih-
DeCani

𝛼 1−exp(−𝛾𝑡)
1−exp(−𝛾) Value in

[−40, 40). −4
= O’Brien-
Fleming like;
1 =
Pocock-like

sfPower
(rho)

Kim-DeMets 𝛼𝑡𝜌 Value in
(0, +∞); 3 =
O’Brien-
Fleming like;
1 =
Pocock-like

sfLDPocock
(none)

Pocock ap-
proximation

𝛼 log(1 + (𝑒 − 1)𝑡) None

8.5 Advanced spending function details 91

Function
(parameter)

Spending
function
family Functional form

Parameter
(sfupar or
sflpar)

sfLDOF
(none)

O’Brien-
Fleming
approxima-
tion

2 × (1 − Φ (Φ−1(𝛼/2)√
𝑡𝜌)) 𝜌 ∈ [0.05, 20],

𝜌 = 1 is
default

sfLinear
(t1, t2, …,
tm) (p1, p2,
…, pm)

Piecewise
linear
specification

Specified points
0 < 𝑡1 < ⋯ < 𝑡𝑚 < 1
0 < 𝑝1 < ⋯ < 𝑝𝑚 < 1

Cumulative
proportion of
information
and error
spending for
given
timepoints

sfExponential
(nu)

Exponential 𝛼𝑡−𝜈 (0, 10]
Recommend
𝜈 < 1; 0.75 =
O’Brien-
Fleming-like

sfLogistic
(a, b)

Logistic 𝛼 𝑒𝑎(𝑡
1−𝑡)𝑏

1+𝑒𝑎(𝑡
1−𝑡)𝑏 𝑏 > 0

sfXG1
(gamma)

Xi-Gallo,
Method 1

2 ×
(1 − Φ (Φ−1(𝛼/2)−Φ−1(𝛾)

√
1−𝑡√

𝑡))
𝛾 ∈ [0.5, 1),
𝛾 = 0.5 same
as sfLDOF()

sfXG2
(gamma)

Xi-Gallo,
Method 2

2 ×
(1 − Φ (Φ−1(𝛼/2)−Φ−1(𝛾)(1−𝑡)√

𝑡))
𝛾 ∈ [1 −
Φ(Φ−1(𝛼/2/2)), 1)

sfXG3
(gamma)

Xi-Gallo,
Method 3

2 ×
(1 − Φ (Φ−1(𝛼/2)−Φ−1(𝛾)(1−

√
𝑡)√

𝑡))
𝛾 ∈ (𝛼/2, 1)

"WT" (Delta) Wang-Tsiatis
bounds

𝐶(𝑘, 𝛼, Δ)(𝑖/𝐾)Δ−1/2 0 = O’Brien-
Fleming
bound; 0.5 =
Pocock
bound

"Pocock"
(none)

Pocock
bounds

This is a
special case
of WT with
Δ = 1/2

92 8 Spending functions

Function
(parameter)

Spending
function
family Functional form

Parameter
(sfupar or
sflpar)

"OF" (none) O’Brien-
Fleming
bounds

This is a
special case
of WT with
Δ = 0

See also subsections below and online documentation of spending functions.

8.5.2 Investigational spending functions

When designing a clinical trial with interim analyses, the rules for stopping
the trial at an interim analysis for a positive or a negative efficacy result must
fit the medical, ethical, regulatory and statistical situation that is presented.
Once a general strategy has been chosen, it is not unreasonable to discuss pre-
cise boundaries at each interim analysis that would be considered ethical for
the purpose of continuing or stopping a trial. Given such specified boundaries,
we discuss here the possibility of numerically fitting 𝛼- and 𝛽-spending func-
tions that produce these boundaries. Commonly-used one-parameter families
may not provide an adequate fit to multiple desired critical values. We present
a method of deriving two-parameter families to provide some additional flex-
ibility along with examples to demonstrate their usefulness. This method has
been found to be useful in designing multiple trials, including the CAPTURE
trial [The CAPTURE Investigators, 1997], the GUSTOV trial [The GUSTO
V Investigators, 2001] and three ongoing trials at Merck.

One method of deriving a two-parameter spending function is to use the
incomplete beta distribution which is commonly denoted by 𝐼𝑥(𝑎, 𝑏) where
𝑎 > 0, 𝑏 > 0. We let

𝛼(𝑡; 𝑎, 𝑏) = 𝛼𝐼𝑡(𝑎, 𝑏).

This spending function is implemented in sfBetaDist(); developing code
for this is also demonstrated below in Section 8.5.4 (writing code for a new
spending function).

Another approach allows fitting spending functions by solving a linear system
of 2 equations in 2 unknowns. A two-parameter family of spending function
is defined using an arbitrary, continuously increasing cumulative distribution
function 𝐹() defined on (−∞, ∞), a real-valued parameter 𝑎 and a positive
parameter 𝑏:

8.5 Advanced spending function details 93

𝛼(𝑡; 𝑎, 𝑏) = 𝛼𝐹(𝑎 + 𝑏𝐹 −1(𝑡)).

Fix two points of the spending function 0 < t0 < t1 < 1 to have spending
function values specified by u0 × alpha and u1 × alpha, respectively, where
0 < u0 < u1 < 1. Equation 𝛼(𝑡; 𝑎, 𝑏) now yields two linear equations with
two unknowns, namely for 𝑖 = 1, 2

𝐹 −1(𝑢𝑖) = 𝑎 + 𝑏𝐹 −1(𝑡𝑖).

The four value specification of param for this family of spending functions is
param=c(t0, t1, u0, u1) where the objective is that sf(t0) = alpha*u0
and sf(t1) = alpha*u1. In this parameterization, all four values must be
between 0 and 1 and t0 < t1, u0 < u1.

The logistic distribution has been used with this strategy to produce spending
functions for ongoing trials at Merck Research Laboratories in addition to the
GUSTO V trial [The GUSTO V Investigators, 2001]. The logit function is
defined for 0 < 𝑢 < 1 as logit(𝑢) = log(𝑢/(1 − 𝑢)). Its inverse is defined
for 𝑥 ∈ (−∞, ∞) as logit−1(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥). Letting 𝑏 > 0, 𝑐 = 𝑒𝑎 > 0,
𝐹(𝑥) = logit−1(𝑥) and applying 𝛼(𝑡; 𝑎, 𝑏) we obtain the logistic spending
function family:

𝛼(𝑡; 𝑎, 𝑏) = 𝛼 × logit−1(log(𝑐) + 𝑏 × logit(𝑢)) (8.3)

= 𝛼 𝑐 (𝑡
1−𝑡)𝑏

1 + 𝑐 (𝑡
1−𝑡)𝑏 . (8.4)

The logistic spending function is implemented in sfLogistic(). Functions
are also available replacing 𝐹() with the cumulative distribution functions
for the standard normal distribution (sfNormal()), two versions of the ex-
treme value distribution (sfExtremeValue() with 𝐹(𝑥) = exp(− exp(−𝑥))
and sfExtremeValue2() with 𝐹(𝑥) = 1 − exp(− exp(𝑥))), the central 𝑡-
distribution (sfTDist()), and the Cauchy distribution (sfCauchy()). Of
these, sfNormal() is fairly similar to sfLogistic(). On the other hand,
sfCauchy() can behave quite differently. The function sfTDist() provides
intermediary spending functions bounded by sfNormal() and sfCauchy();
it requires an additional parameter, the degrees of freedom See online help
for more complete documentation, particularly for sfTDist(). Following is
an example that plots several of these spending functions that fit through
the same two points (t1 = 0.25, t2 = 0.5, u1 = 0.1, u2 = 0.2) but behave
differently for 𝑡 > 1/2.

94 8 Spending functions

plotsf <- function(alpha, t, param) {
plot(
t, sfCauchy(alpha, t, param)$spend,
lwd = 2,
xlab = "Proportion of enrollment",
ylab = "Cumulative spending", type = "l"

)
lines(
t, sfLogistic(alpha, t, param)$spend,
lty = 4, lwd = 2

)
lines(
t, sfNormal(alpha, t, param)$spend,
lty = 5, lwd = 2

)
lines(
t, sfTDist(alpha, t, c(param, 1.5))$spend,
lty = 2, lwd = 2

)
lines(
t, sfTDist(alpha, t, c(param, 2.5))$spend,
lty = 3, lwd = 2

)
legend(
x = c(0.0, 0.3), y = alpha * c(0.7, 1), lty = 1:5, lwd = 2,
legend = c(
"Cauchy", "t 1.5 df", "t 2.5 df", "Logistic", "Normal"

)
)

}
param <- c(0.25, 0.5, 0.1, 0.2)
plotsf(0.025, t = c(0.25, 0.5, 0.75), param = param)

8.5 Advanced spending function details 95

0.3 0.4 0.5 0.6 0.7

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

Proportion of enrollment

C
um

ul
at

iv
e

sp
en

di
ng

Cauchy
t 1.5 df
t 2.5 df
Logistic
Normal

Figure 8.3

8.5.3 Optimized spending functions

The following two examples demonstrate some of the flexibility and research
possibilities for the gsDesign package. The particular examples may or may
not be of interest, but the strategy may be applied using a variety of opti-
mization criteria. First, we consider finding a spending function to match a
Wang-Tsiatis design. This could be useful to adjust a Wang-Tsiatis design
if the timing of interim analyses are not as originally planned. Second, we
replicate a result from Anderson [Anderson, 2007] which minimized expected
value of the square of sample size over a family of spending functions and a
prior distribution.

96 8 Spending functions

8.5.3.1 Approximating a Wang-Tsiatis design

We have noted several approximations of O’Brien-Fleming and Pocock spend-
ing rules using spending functions in the table above. Following is sample code
to provide a good approximation of Wang-Tsiatis bounds with a given param-
eter Δ. This includes O’Brien-Fleming (Δ=0) and Pocock (Δ=0.5) designs.
First, we define a function that computes the sum of squared deviations of the
boundaries of a Wang-Tsiatis design compared to a one-parameter spending
function family with a given parameter value of x. Note that Delta is the pa-
rameter for the Wang-Tsiatis design that we are trying to approximate. Other
parameters are as before; recall that test.type should be limited to 1 or 2
for Wang-Tsiatis designs. Defaults are used for parameters for gsDesign()
not included here.
WTapprox <- function(

x,
alpha = 0.025,
beta = 0.1,
k = 3,
sf = sfHSD,
Delta = 0.25,
test.type = 2) {

Wang-Tsiatis comparison with a one-parameter spending function
y1 <- gsDesign(
k = k,
alpha = alpha,
beta = beta,
test.type = test.type,
sfu = "WT",
sfupar = Delta

)$upper$bound
y2 <- gsDesign(
k = k,
alpha = alpha,
beta = beta,
test.type = test.type,
sfu = sf,
sfupar = x

)$upper$bound
z <- y1 - y2
return(sum(z * z))

}

We consider approximating a two-sided O’Brien-Fleming design with alpha
= 0.025 (one-sided) using the exponential spending function. The function
nlminb() is a standard R function used for minimization. It minimizes a func-

8.5 Advanced spending function details 97

tion passed to it as a function of that function’s first argument, which may
be a vector. The first parameter of nlminb() is a starting value for the mini-
mization routine. The second is the function to be minimized. The parameter
lower below provides a lower bound for first argument to the function be-
ing passed to nlminb(). Following parameters are fixed parameters for the
function being passed to nlminb(). The result suggests that for 𝑘 = 4, an ex-
ponential spending function with 𝜈 = 0.75 approximates an O’Brien-Fleming
design well. Examining this same optimization for 𝑘 = 2 to 10 suggests that
𝜈 = 0.75 provides a good approximation of an O’Brien-Fleming design across
this range.
nu <- nlminb(
start = 0.75,
objective = WTapprox,
lower = 0,
sf = sfExponential,
k = 4,
Delta = 0,
test.type = 2

)$par
nu

Running comparable code for sfHSD() and sfPower() illustrates that the
exponential spending function can provide a better approximation of an
O’Brien-Fleming design than either the Hwang-Shih-DeCani or Kim-DeMets
spending functions. For Pocock designs, the Hwang-Shih-DeCani spending
function family provides good approximations.

Minimizing the expected value of a power of sample size

In this example, we first define a function that computes a weighted average
across a set of theta values of the expected value of a given power of the
sample size for a design. Note that sfupar and sflpar are specified in the
first input argument so that they may later be optimized using the R routine
nlminb(). The code is compact, which is very nice for writing, but it may
be difficult to interpret. A good way to see how the code works is to define
values for all of the parameters and run each line from the R command
prompt, examining the result.
#' Expected value of the power of sample size of a trial
#' as a function of upper and lower spending parameter.
#' Get sfupar from x[1] and sflpar from x[2].
#'
#' @param val The power of the sample size for which
#' expected values are computed.
#' @param theta A vector for which expected values
#' are to be computed.

98 8 Spending functions

#' @param thetawgt A vector of the same length used to
#' compute a weighted average of the expected values.
#' Other parameters are as for gsDesign.
enasfpar <- function(

x,
timing = 1,
theta,
thetawgt,
k = 4,
test.type = 4,
alpha = 0.025,
beta = 0.1,
astar = 0,
delta = 0,
n.fix = 1,
sfu = sfHSD,
sfl = sfHSD,
val = 1,
tol = 0.000001,
r = 18) {

Derive design
y <- gsDesign(
k = k,
test.type = test.type,
alpha = alpha,
beta = beta,
astar = astar,
delta = delta,
n.fix = n.fix,
timing = timing,
sfu = sfu,
sfupar = x[1],
sfl = sfl,
sflpar = x[2],
tol = tol,
r = r

)
Compute boundary crossing probabilities for input theta
y <- gsProbability(theta = theta, d = y)
Compute sample sizes to the val power
n <- y$n.I^val
Compute expected values
en <- n %*% (y$upper$prob + y$lower$prob)
Compute weighted average of expected values

8.5 Advanced spending function details 99

en <- sum(as.vector(en) * as.vector(thetawgt))

return(en)
}

Now we use this function along with the R routine nlminb() which finds a
minimum across possible values of sfupar and sflpar. The design derived
using the code below and a more extensive discussion can be found in [Ander-
son, 2007]. The code above is more general than in [Anderson, 2007], however,
as that paper was restricted to test.type=5 (the program provided there
also worked for test.type=6).
Example from Anderson (2006)
delta <- abs(qnorm(0.025) + qnorm(0.1))
Use normal distribution to get weights
x <- normalGrid(mu = delta, sigma = delta / 2)
x <- nlminb(
start = c(0.7, -0.8),
enasfpar,
theta = x$z,
timing = 1,
thetawgt = x$wgts,
val = 2,
k = 4,
tol = 0.0000001

)
x$message
y <- gsDesign(
k = 4,
test.type = 5,
sfupar = x$par[1],
sflpar = x$par[2]

)
y

8.5.4 Writing code for a new spending function

Following is sample code using a cumulative distribution function for a beta-
distribution as a spending function. Let B(a,b) denote the complete beta
function. The beta distribution spending function is denoted for any fixed
𝑎 > 0 and 𝑏 > 0 by

100 8 Spending functions

𝛼(𝑡) = 𝛼
𝐵(𝑎, 𝑏)

𝑡
∫
0

𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥.

This spending function provides much of the flexibility of spending functions
in the last subsection, but is not of the same general form. This sample code
is intended to provide guidance in writing code for a new spending function,
if needed.
Implementation of 2-parameter version of beta distribution
spending function.
Assumes t and alpha are appropriately specified
(does not check!).
sfbdist <- function(alpha, t, param) {
Set up return list and its class
x <- list(
name = "B-dist example",
param = param,
parname = c("a", "b"),
sf = sfbdist,
spend = NULL,
bound = NULL,
prob = NULL,
errcode = 0,
errmsg = "No error"

)
class(x) <- "spendfn"
Check for errors in specification of a and b
gsReturnError is a simple function available from the
package for saving errors in the returned value
if (length(param) != 2) {
return(gsReturnError(x,
errcode = 0.3,
errmsg = "b-dist example spending function parameter must be of length 2"

))
}
if (!is.numeric(param)) {
return(gsReturnError(x,
errcode = 0.1,
errmsg = "Beta distribution spending function parameter must be numeric"

))
}
if (param[1] <= 0) {
return(gsReturnError(x,
errcode = 0.12,
errmsg = "1st Beta distribution spending function parameter must be > 0."

8.5 Advanced spending function details 101

))
}
if (param[2] <= 0) {
return(gsReturnError(x,
errcode = 0.13,
errmsg = "2nd Beta distribution spending function parameter must be > 0."

))
}
Set spending using cumulative beta distribution function and return
x$spend <- alpha * pbeta(t, x$param[1], x$param[2])
return(x)

}

The flexibility of this spending function is demonstrated by the following code
which produces the plot below. Using a = 𝜌, b = 1 produces a Kim-DeMets
spending function 𝛼𝑡𝜌 as shown by the solid line with 𝜌=2. The dashed line
(a = 6, b = 4) shows a spending function that is conservative very early, but
then aggressive in its spending pattern starting after about 40% of data are
available. The dotted (a = 0.5, b = 0.5) and dot-dashed (a = 0.6, b = 2)
show increasingly aggressive early spending. These may be useful in setting
an initial high futility bound when the first part of a trial is used as a proof
of concept for a clinical endpoint.
Plot some beta distribution spending functions
plot(0:100 / 100, sfbdist(1, 0:100 / 100, c(2, 1))$spend,
type = "l", lwd = 2,
xlab = "Proportion of information",
ylab = "Cumulative proportion of total spending",
main = "Beta Distribution Spending Function Example"

)
lines(
0:100 / 100, sfbdist(1, 0:100 / 100, c(6, 4))$spend,
lty = 2, lwd = 2

)
lines(
0:100 / 100, sfbdist(1, 0:100 / 100, c(0.5, 0.5))$spend,
lty = 3, lwd = 2

)
lines(
0:100 / 100, sfbdist(1, 0:100 / 100, c(0.6, 2))$spend,
lty = 4, lwd = 2

)
legend(
x = c(0.65, 1), y = 1 * c(0, 0.25), lty = 1:4, lwd = 2,
legend = c(

102 8 Spending functions

"a=2, b=1", "a=6, b=4", "a=0.5,b=0.5", "a=0.6, b=2"
)

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta Distribution Spending Function Example

Proportion of information

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 to
ta

l s
pe

nd
in

g

a=2, b=1
a=6, b=4
a=0.5,b=0.5
a=0.6, b=2

Figure 8.4

Chapter 9

Analyzing group sequential trials

We present several ways to review and interpret interim and final results
from group sequential trials. Generally, regulatory agencies will have interest
in well-controlled Type I error and unbiased treatment estimates.

9.1 The CAPTURE data

We consider interim [Cytel, 2007] and final [The CAPTURE Investigators,
1997] data from the CAPTURE trial. Table 9.1 provides a summary.

Table 9.1: Summary of the CAPTURE trial.

Placebo Experimental
Analysis Events n % Events n % 𝑍
1 30 175 17.1% 14 175 8.0% 2.58
2 55 353 15.6% 37 347 10.7% 1.93
3 84 532 15.8% 55 518 10.6% 2.47
4 101 635 15.9% 71 630 11.3% 2.41

The interim data presented here is from finalized datasets rather than the
actual data that was analyzed at the time of interim analyses. Also, we take
a binomial analysis approach here using the method of Miettinen and Nur-
minen [Miettinen and Nurminen, 1985]; the original study analyses used the
logrank test. The CAPTURE study was originally designed using symmetric
bounds, and the final planned sample size was 1400 patients. The trial was
stopped after analyzing the data from 1050 patients. Enrollment continued
during follow-up, data entry and cleaning, adjudication and analysis of the
data. By the time of the 1050 patient analysis was evaluated and the deci-
sion was made to stop the trial, a total of 1265 patients had been enrolled.

103

104 9 Analyzing group sequential trials

Following are the data which are then summarized including Z-values using
the methods of Miettinen and Nurminen [Miettinen and Nurminen, 1985] are
used, but without a continuity correction as recommended by Gordon and
Watson [Gordon and Watson, 1985].
library(gsDesign)

n1 <- c(175, 353, 532, 635)
n2 <- c(175, 347, 518, 630)
x1 <- c(30, 55, 84, 101)
x2 <- c(14, 37, 55, 71)
z <- testBinomial(x1 = x1, x2 = x2, n1 = n1, n2 = n2)
round(z, 2)
#> [1] 2.58 1.93 2.47 2.41

9.2 Testing significance of the CAPTURE data

The Z-statistics computed above can only be interpreted in context of the
study design. The original design used a custom spending function which has
not been published and will not be discussed further here. Also, while the trial
originally had a symmetric, 2-sided design we will use a design with a futility
bound here. Below we create an asymmetric design for CAPTURE with a
non-binding futility rule and default upper and lower spending functions, but
change the upper spending function parameter for the Hwang-Shih-DeCani
spending function to 𝛾 = −3. The original plan was to perform interim
analyses after 350 and 700 patients.

The code sequence below is as described follows:

• Compute the fixed design sample size using nBinomial().
• Compute a group sequential design with standard spending functions and

interim analyses after 25% and 50% of the data (first call to gsDesign()).
• In order to get timing of interims exactly at 350 and 700 patients, we set

the timing of intervals to 350/𝑛, 700/𝑛 where 𝑛 here represents the group
sequential design sample size. This required 3 iterations to satisfactorily
converge since the required 𝑛 changes as the interim timing changes. In
the final call to gsDesign() we include the information that the trial is
designed to detect a difference in binomial rates and the presumed under-
lying treatment difference under the alternate hypothesis is 0.05 ($ = 0.15
- 0.10$).

• We then show the sample size and upper bounds at each analysis.
• Finally, we plot the approximate treatment differences required to cross

each boundary with 3 digits of accuracy.

9.2 Testing significance of the CAPTURE data 105

n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)
x <- gsDesign(
k = 3,
n.fix = n.fix,
beta = 0.2,
sfupar = -3

)
x <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3

)
x <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3

)
CAPTURE <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3,
endpoint = "binomial",
delta1 = 0.05

)
ceiling(x$n.I / 2) * 2
#> [1] 352 702 1452

x$upper$bound
#> [1] 2.990047 2.718060 1.999961

plot(CAPTURE)

106 9 Analyzing group sequential trials

2.99

2.72

2

−0.65

0.26

2

N=350 N=700 N=1450−1

0

1

2

3

300 600 900 1200 1500
Sample size

N
or

m
al

 c
rit

ic
al

 v
al

ue

Bound

Lower

Upper

Normal test statistics at bounds

plot(CAPTURE, plottype = "xbar", dgt = c(3, 3))

0.106

0.068

0.035

−0.023

0.007

0.035

N=350 N=700 N=1450
−0.04

0.00

0.04

0.08

300 600 900 1200 1500
Sample size

p̂ C
−

p̂ E

Bound

Lower

Upper

Treatment effect at bounds

9.3 Adding an interim analysis to a design 107

9.3 Adding an interim analysis to a design

The original design of the CAPTURE trial had two interim analyses planned
after 350 and 700 patients. As we have seen, a third interim was added at 1050
patients at the request of the data monitoring committee. The distribution
theory for group sequential design requires that timing of interims is inde-
pendent of interim test statistics. Thus, it would be preferable for a request
for an additional interim to come from a group not familiar with the interim
unblinded results; in this case, adding the requested interim was discussed
with regulators who agreed to building the third interim as if there was no
input based on knowledge of unblinded interim results. We will demonstrate
how to appropriately control Type I error when an an analysis is added based
on unblinded results when discussing conditional power and conditional error
later.

The following code demonstrates how to add an interim analysis to a design
when interim test statistics are not known. The arguments require are:

• The number of analyses, which is being updated to k = 4.
• The sample size at each analysis in n.I. We keep the originally planned

times at 350, 700, and CAPTURE$n.I[3] and add an analysis after 1050
patients.

• The maximum sample size from the original plan in maxn.IPlan.
• The originally planned fixed design sample size in n.fix, original Type

II error in beta and original spending function parameters (in this case,
defaults plus sfupar).

CAPTURE3IA <- gsDesign(
k = 4,
n.I = c(350, 700, 1050, CAPTURE$n.I[3]),
n.fix = n.fix,
maxn.IPlan = CAPTURE$n.I[3],
sfupar = -3,
beta = 0.2

)
CAPTURE3IA$lower$bound[4]
#> [1] 1.980993

CAPTURE3IA$upper$bound[4]
#> [1] 2.039066

The above adjustment leaves the sample size of the two previously planned
interims, the spending functions, and the final analysis sample size alone.
This is done by leaving the 𝛼- and 𝛽-spending alone at these interims, which
is driven by leaving the maximum sample size and spending functions alone.
You can see that when a new interim analysis is added to a design without
increasing the sample size, the upper and lower boundaries are not the same at

108 9 Analyzing group sequential trials

the final analysis as they were previously. This is because by adding 𝛼- and 𝛽-
spending at a third interim analysis, the final boundaries need to be changed
to maintain the total 𝛼- and 𝛽-spending as desired. Power is measured by the
probability of crossing the upper boundary under the alternate hypothesis
as stored in sum(CAPTURE3IA$upper$prob[,2]) =0.788. The fact that the
upper and lower bounds are not equal to each other means the power to cross
the upper bound is somewhat reduced.

To adjust the design, we change the final lower bound to be equal to the
upper bound so that Type II error reflects actual decision-making; the final
analysis will no longer reflect the originally planned 𝛽-spending at the final
analysis
cumsum(CAPTURE3IA$lower$spend)
#> [1] 0.01942596 0.05090704 0.10192428 0.20000000

CAPTURE3IA$lower$bound[4] <- CAPTURE3IA$upper$bound[4]
CAPTURE3IA <- gsProbability(
d = CAPTURE3IA,
theta = CAPTURE3IA$theta

)
CAPTURE3IA$lower$prob[4, 2]
#> [1] 0.109738

plot(CAPTURE3IA)

2.99

2.72

2.42

2.04

−0.65

0.26

1.06

2.04

N=350 N=700 N=1050 N=1450−1

0

1

2

3

300 600 900 1200 1500
Sample size

N
or

m
al

 c
rit

ic
al

 v
al

ue

Bound

Lower

Upper

Normal test statistics at bounds

9.4 Stage-wise 𝑝-values 109

9.4 Stage-wise 𝑝-values

Fairbanks and Madsen [Madsen and Fairbanks, 1983] provide a method for
computing 𝑝-values for a symmetric group sequential trial design once a
boundary has been crossed. Here we will consider just 𝑝-values for positive
efficacy findings for asymmetric designs. We assume for some 𝑖 in 1, 2, … , 𝑘
that an upper bound is first crossed at analysis 𝑖 with a test statistic values 𝑧𝑖.
The stage-wise 𝑝-value uses the same computational method as 𝛼+(0) from
equation

𝛼+(𝜃) ≡
𝑘

∑
𝑖=1

𝛼+
𝑖 (𝜃)

𝑝𝑆𝑊 = 𝑃0{{𝑍𝑖 ≥ 𝑧𝑖} ∩𝑖−1
𝑗=1 {𝑍𝑗 < 𝑏𝑗}}

This formula can still be used for the final analysis when the upper bound is
never crossed. This method of computing 𝑝-values emphasizes early positive
results and de-emphasizes late results. No matter how positive a result is
after the first analysis, the 𝑝-value associated with a positive result will not
be smaller than a first analysis result that barely crosses its bound. There is
no way to compute a 𝑝-value if, for some reason, you stop a trial early without
crossing a bound. For the CAPTURE data analyzed according to the default
design derived above, we compute a stagewise 𝑝-value by replacing the upper
boundary at the third interim analysis with the 𝑍-value that crossed that
bound. The stagewise 𝑝-value is then the probability of crossing an upper
bound at the first 3 interim analyses assuming this modified bound.
b <- CAPTURE3IA$upper$bound[1:2]
b <- c(b, z[3])
y <- gsProbability(
k = 3,
theta = 0,
n.I = CAPTURE3IA$n.I[1:3],
a = array(-20, 3),
b = b

)
sum(y$upper$prob)
#> [1] 0.009259521

110 9 Analyzing group sequential trials

9.5 Repeated confidence intervals

Repeated confidence intervals use the nominal Type I error at each interim
analysis to compute confidence bounds in the usual fashion. For the binomial
analysis of the CAPTURE trial we use Miettinen and Nurminen [Miettinen
and Nurminen, 1985] confidence intervals at 2 times the nominal 𝛼-level of
the upper bound, 2 × (1 − Φ(𝑢𝑘)), 𝑖 = 1, 2, … , 𝑘.
gsBinomialRCI <- function(d, x1, x2, n1, n2) {
y <- NULL
rname <- NULL
nanal <- length(x1)
for (i in 1:nanal) {
y <- c(y, ciBinomial(
x1 = x1[i], x2 = x2[i], n1 = n1[i],
n2 = n2[i], alpha = 2 * pnorm(-d$upper$bound[i])

))
rname <- c(rname, paste("Analysis", i))

}
ci <- matrix(y, nrow = nanal, ncol = 2, byrow = T)
rownames(ci) <- rname
colnames(ci) <- c("Lower CI", "Upper CI")
ci

}
rci <- gsBinomialRCI(
CAPTURE3IA,
x1[1:3],
x2[1:3],
n1[1:3],
n2[1:3]

)
pdif <- (x1 / n1 - x2 / n2)[1:3]
pdif
#> [1] 0.09142857 0.04917912 0.05171713

rci
#> Lower CI Upper CI
#> Analysis 1 -0.01554062 0.2032692
#> Analysis 2 -0.02080474 0.1200844
#> Analysis 3 0.001147321 0.102811

plot((n1 + n2)[1:3], rci[, 2],
ylim = c(-0.05, 0.25), xlab = "Sample size",
ylab = expression(hat(p)[C] - hat(p)[E])

)

9.6 Subdensity functions 111

points((n1 + n2)[1:3], rci[, 1])
points((n1 + n2)[1:3], pdif)

400 500 600 700 800 900 1000

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Sample size

p̂ C
−

p̂ E

Figure 9.1

9.6 Subdensity functions

The subdensity functions defined here are useful for purposes of estimation as
discussed by Jennison and Turnbull [Jennison and Turnbull, 2000], Chapter
8. In particular, these may be used for stagewise confidence intervals. We
define a subdensity function for the probability that a trial continues without
crossing a boundary until analysis 𝑖, and then the 𝑍-value takes on a value
𝑧 at that analysis, 𝑖 = 1, 2, … , 𝑘:

112 9 Analyzing group sequential trials

𝑝𝑖(𝑧|𝜃) = 𝑑
𝑑𝑧 𝑃𝜃{{𝑍𝑖 ≥ 𝑧} ∩𝑖−1

𝑗=1 {𝑙𝑗 < 𝑍𝑗 < 𝑢𝑗}}, (9.1)

These subdensity functions are used to compute 𝛼𝑖(𝜃) as defined in equation

𝛼𝑖(𝜃) = 𝑃𝜃{{𝑍𝑖 ≥ 𝑢𝑖} ∩𝑖−1
𝑗=1 {𝑙𝑗 < 𝑍𝑗 < 𝑢𝑗}}, 𝑖 = 1, 2, … , 𝑘.

Normally, this will not be of great concern to the reader even though this com-
putation will go on “behind the scenes” each time a group sequential design
is derived or boundary crossing probability computed. However, a subdensity
function for a design may be computed using the function gsDensity() as
follows. In ?@fig-gsdensity, we replicate parts of Figure 8.1 and Figure 8.2
of Jennison and Turnbull ([Jennison and Turnbull, 2000]) which show the
subdensities for an O’Brien-Fleming design with four analyses.

We will later apply Equation 9.1 to compute a posterior distribution for 𝜃
given an interim test statistic 𝑍𝑖 = 𝑧 at analysis, 𝑖, 1 ≤ 𝑖 ≤ 𝑘.

Chapter 10

Conditional power and B-values

In some cases, rather than working with 𝑍1, 𝑍2, … , 𝑍𝑘 as in Section 2.3, it is
desirable to consider variables representing incremental sets of observations
between analyses. We consider a discrete version of the Brownian motion
formulation of Proschan, Lan and Wittes [Proschan et al., 2006] and apply
the same principles to demonstrate how to compute conditional power and
conditional error using the calculation tools we have been applying for group
sequential designs. Those who prefer to skip the background materials can
proceed directly to Section 10.4.1.

10.1 Z-values, B-values and S-values

We let 𝑋1, 𝑋2, … be independent and identically distributed normal random
variables with mean 𝛿 and variance 𝜎2, as before. We let 0 < 𝑛1 < 𝑛2 … < 𝑛𝑘
for some 𝑘 > 1. For 𝑖 = 1, 2, … , 𝑘 define ℐ𝑖 = 𝑛𝑖/𝜎2 and 𝑡𝑖 = 𝑛𝑖/𝑛𝑘 = ℐ𝑖/ℐ𝑘.
We next define treatment effect estimates, S-values, B-values, and Z-values
as follows for 𝑖 = 1, 2, … , 𝑘:

𝑆𝑖,𝑗 = ∑𝑛𝑗
𝑚=𝑛𝑖+1 𝑋𝑚 ∼ 𝑁(𝑛𝑖,𝑗𝛿, 𝑛𝑖𝜎2),

𝑍𝑖,𝑗 = 𝑆𝑖,𝑗/(√𝑛𝑖,𝑗𝜎) ∼ 𝑁(√𝑛𝑖,𝑗𝜃, 1) ∼ 𝑁(√ℐ𝑖,𝑗𝛿, 1),

𝐵𝑖,𝑗 = 𝑆𝑖,𝑗/(√𝑛𝑘𝜎) ∼ 𝑁(√𝑛𝑘𝑡𝑖,𝑗𝜃, 𝑡𝑖,𝑗) ∼ 𝑁(√ℐ𝑘𝑡𝑖,𝑗𝛿, 𝑡𝑖,𝑗).

Note that 𝐵𝑖 = √𝑡𝑖𝑍𝑖, 1 ≤ 𝑖 ≤ 𝑘. Letting 𝜃 = 𝛿/𝜎 we write a formulation of
the above in terms of the standardized parameter 𝜃:

113

114 10 Conditional power and B-values

̂𝜃𝑖 = ̂𝛿𝑖/𝜎 ∼ 𝑁(𝜃, 1/𝑛𝑖),

𝑍𝑖 = √𝑛𝑖 ̂𝜃𝑖 ∼ 𝑁(√𝑛𝑖𝜃, 1),

𝐵𝑖 = √𝑡𝑖𝑍𝑖 ∼ 𝑁(√𝑛𝑘𝑡𝑖𝜃, 𝑡𝑖).

These last forms for 𝑍𝑖 and 𝐵𝑖 have been written in a general format that
will apply to trials with many types of endpoints where ̂𝛿𝑖, ̂𝜎𝑖 and ℐ𝑖 take dif-
ferent forms. Scharfstein, Tsiatis and Robbins [Scharfstein et al., 1997] have
generalized work from many others by showing that if 𝑍𝑖 is an asymptotically
efficient test for a single parameter in a parametric or semi-parametric model
then the asymptotic theory holds. Proschan, Lan and Wittes [Proschan et al.,
2006] provide extensive coverage of application of the Brownian motion ver-
sion of B-values used here to group sequential trials with several different
types of endpoints.

We now re-write bounds and boundary crossing probabilities in terms of B-
values. For 𝑖 = 1, 2, … , 𝑘 we define 𝑏𝑖 = 𝑢𝑖

√𝑡𝑖, 𝑎𝑖 = 𝑙𝑖
√𝑡𝑖 and note that

𝛼𝑖(𝜃) = 𝑃𝜃{{𝑍𝑖 ≥ 𝑢𝑖} ∩𝑖−1
𝑗=1 {𝑙𝑗 ⩽ 𝑍𝑗 < 𝑢𝑗}}

= 𝑃𝜃{{𝐵𝑖 ≥ 𝑏𝑖} ∩𝑖−1
𝑗=1 {𝑎𝑗 ⩽ 𝐵𝑗 < 𝑏𝑗}}.

(10.1)

Formulas for 𝛽𝑖(𝜃) and 𝛼+
𝑖 (𝜃) can be rewritten in an analogous fashion:

𝛼+
𝑖 (𝜃) = 𝑃𝜃{{𝐵𝑖 ≥ 𝑏𝑖} ∩𝑖−1

𝑗=1 {𝐵𝑗 < 𝑏𝑗}} (10.2)
𝛽𝑖(𝜃) = 𝑃𝜃{{𝐵𝑖 ⩽ 𝑎𝑖} ∩𝑖−1

𝑗=1 {𝑎𝑗 ⩽ 𝐵𝑗 < 𝑏𝑗}} (10.3)

10.2 Incremental formulation

We now formulate a group sequential set of outcomes in terms of independent
increments to simplify conditional power calculations. Define 𝑛0 = 𝑆0 = 0
and for 0 ≤ 𝑖 < 𝑗 ≤ 𝑘, 𝑛𝑖,𝑗 = 𝑛𝑗 − 𝑛𝑖, 𝑡𝑖,𝑗 = 𝑛𝑖,𝑗/𝑛𝑘, ℐ𝑖,𝑗 = 𝑛𝑖,𝑗/𝜎2

𝑆𝑖,𝑗 = ∑𝑛𝑗
𝑚=𝑛𝑖+1 𝑋𝑚 ∼ 𝑁(𝑛𝑖,𝑗𝛿, 𝑛𝑖𝜎2),

𝑍𝑖,𝑗 = 𝑆𝑖,𝑗/(√𝑛𝑖,𝑗𝜎) ∼ 𝑁(√𝑛𝑖,𝑗𝜃, 1) ∼ 𝑁(√ℐ𝑖,𝑗𝛿, 1),

𝐵𝑖,𝑗 = 𝑆𝑖,𝑗/(√𝑛𝑘𝜎) ∼ 𝑁(√𝑛𝑘𝑡𝑖,𝑗𝜃, 𝑡𝑖,𝑗) ∼ 𝑁(√ℐ𝑘𝑡𝑖,𝑗𝛿, 𝑡𝑖,𝑗).

10.3 Simple conditional power and conditional error 115

Analogous to before, 𝐵𝑖,𝑗 = √𝑡𝑖,𝑗𝑍𝑖,𝑗 and we can apply the ultimate con-
ditional power and conditional error calculations below broadly to group
sequential designs for which the general asymptotic theory is applicable. For
0 ≤ 𝑖 < 𝑗 ≤ 𝑘 we note that 𝐵𝑖 = 𝐵0,𝑖 and that 𝐵𝑗 = 𝐵𝑖 + 𝐵𝑖,𝑗 where 𝐵𝑖
and 𝐵𝑖,𝑗 are independent and normally distributed. Thus, the conditional
distribution of 𝐵𝑗 assuming 𝐵𝑖 = 𝑐 for some 1 < 𝑖 < 𝑗 ⩽ 𝑘 and constant 𝑐 is
normal with mean 𝑐 + √𝑛𝑘𝑡𝑖,𝑗𝜃 and variance 𝑡𝑖,𝑗.

10.3 Simple conditional power and conditional error

Proschan, Lan and Wittes [Proschan et al., 2006] and others compute a simple
version of conditional boundary crossing probabilities that ignores interim
stopping boundaries between an interim analysis that we condition on and
some future analysis of interest. That is, assuming 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 we assume
𝐵𝑖 = 𝑐 and we compute conditional power as

𝑃{𝐵𝑗 ≥ 𝑏𝑗|𝐵𝑖 = 𝑐} = 𝑃{𝐵𝑖,𝑗 ≥ 𝑏𝑗 − 𝑐}

= 1 − Φ (𝑏𝑗 − 𝑐 − 𝜃𝑡𝑖,𝑗
√𝑛𝑘

√𝑡𝑖,𝑗
)

= 1 − Φ (𝑏𝑗 − 𝑐 − 𝛿𝑡𝑖,𝑗√ℐ𝑘
√𝑡𝑖,𝑗

)

(10.4)

10.3.1 Simple conditional power for the CAPTURE trial

We consider the interim data as previously displayed in Chapter 9, but re-
strict ourselves initially to the 2 interim analysis design. Recall that test
statistics are in z and the design in CAPTURE. We apply Equation 10.4 to
compute the simple conditional power and conditional error of crossing each
future bound at the time of the first interim analysis. For each analysis, we
place the information fractions (fractions of final sample size in this case) in
ti and the B-value bounds for the design in b. We use the standardized pa-
rameter 𝜃 formulation from equation Equation 10.4. The observed B-values
corresponding to the first 3 analyses are placed in bobs. We then store the
effect size powered for in theta1 and the observed interim effect size at the
first analysis estimated by ̂𝜃1 = 𝑍1/√𝑛1 in thetahat. Finally, we compute
the standard deviation for 𝐵1,𝑗 for 𝑗 = 2, 3, 4 as 𝑡𝑗 − 𝑡1 and store it in sd1j.
library(gsDesign)

n1 <- c(175, 353, 532, 635)

116 10 Conditional power and B-values

n2 <- c(175, 347, 518, 630)
x1 <- c(30, 55, 84, 101)
x2 <- c(14, 37, 55, 71)
z <- testBinomial(x1 = x1, x2 = x2, n1 = n1, n2 = n2)

n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)
x <- gsDesign(
k = 3,
n.fix = n.fix,
beta = 0.2,
sfupar = -3

)
x <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3

)
x <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3

)
CAPTURE <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3,
endpoint = "binomial",
delta1 = 0.05

)

n <- (n1 + n2)[1:2]
ti <- c(n / CAPTURE$n.I[3], 1)
b <- CAPTURE$upper$bound * sqrt(ti)
bobs <- z[1:2] * sqrt(ti[1:2])
theta1 <- CAPTURE$delta
thetahat <- z[1:2] / sqrt(n)
t1j <- ti[2:3] - ti[1]
n1j <- c(n[2], CAPTURE$n.I[3]) - n[1]

10.4 Conditional power and conditional error 117

sd1j <- sqrt(t1j)
b1j <- b[2:3] - bobs[1]

The simple conditional error after the first interim analysis is
simpCError <- pnorm(
b1j,
sd = sd1j,
mean = 0,
lower = FALSE

)
simpCError
#> [1] 0.1028575 0.2001852

Plugging the originally powered effect size produces one conditional power
estimate.
simpCPwr1 <- pnorm(
b1j,
sd = sd1j,
mean = theta1 * sqrt(CAPTURE$n.I[3]) * t1j,
lower = FALSE

)
simpCPwr1
#> [1] 0.5596153 0.9523688

The conditional power assuming the observed interim effect size is
simpCPwrHat <- pnorm(
b1j,
sd = sd1j,
mean = thetahat * sqrt(CAPTURE$n.I[3]) * t1j,
lower = FALSE

)
simpCPwrHat
#> [1] 0.9056190 0.9421038

10.4 Conditional power and conditional error

As an alternative to futility bounds based on 𝛽-spending, stopping rules for
futility are sometimes based on the conditional power of a positive trial given
the value of a test statistic at an interim analysis. Thus, we consider the
conditional probabilities of boundary crossing for a group sequential design
given an interim result. Assume 1 ≤ 𝑖 < 𝑗 ⩽ 𝑘 and 𝐵𝑖 = 𝑐. The conditional

118 10 Conditional power and B-values

probabilities for first crossing an upper boundary at analysis 𝑗 given 𝐵𝑖 = 𝑐
is

𝛼𝑖,𝑗(𝜃|𝐵𝑖 = 𝑐) = 𝑃𝜃{{𝐵𝑗 ⩾ 𝑏𝑗} ∩𝑗−1
𝑚=𝑖+1 {𝑎𝑚 ⩽ 𝐵0,𝑚 < 𝑏𝑚}|𝐵0𝑖 = 𝑐}

= 𝑃𝜃{{𝐵𝑖𝑗 ⩾ 𝑏𝑗 − 𝑐} ∩𝑗−1
𝑚=𝑖+1 {𝑎𝑚 − 𝑐 ⩽ 𝐵𝑖𝑚 < 𝑏𝑚 − 𝑐}}

(10.5)

Formulas for 𝛼+
𝑖,𝑗(𝜃|𝐵𝑖 = 𝑐) and 𝛽𝑖,𝑗(𝜃|𝑐) can be written analogously:

𝛼+
𝑖,𝑗(𝜃|𝐵𝑖 = 𝑐) = 𝑃𝜃{{𝐵𝑖,𝑗 ⩾ 𝑏𝑗 − 𝑐} ∩𝑗−1

𝑚=𝑖+1 {𝐵𝑖𝑚 < 𝑏𝑚 − 𝑐}}
(10.6)

𝛽𝑖,𝑗(𝜃|𝐵𝑖 = 𝑐) = 𝑃𝜃{{𝐵𝑖,𝑗 ⩽ 𝑏𝑗 − 𝑐} ∩𝑗−1
𝑚=𝑖+1 {𝑎𝑚 − 𝑐 ⩽ 𝐵𝑖,𝑚 < 𝑏𝑚 − 𝑐}}

(10.7)

Given the above and Equation 10.1, conditional boundary crossing proba-
bilities can be computed using the same numerical tools as unconditional
boundary crossing probabilities. The conditional design generated is that of
Muller and Schafer [Müller and Schäfer, 2001].

Given the above and Equation 10.1, conditional boundary crossing proba-
bilities can be computed using the same numerical tools as unconditional
boundary crossing probabilities. We rewrite the incremental 𝐵-value bounds
as incremental 𝑍-value bounds as these are values produced in the function
gsCP() provided below. Recalling that the incremental 𝑍-value is denoted
𝑍𝑖,𝑗 = 𝐵𝑖,𝑗/√𝑡𝑖,𝑗 for 0 ≤ 𝑖 < 𝑗 ≤ 𝑘. If the interim B-value at analysis 𝑖
is 𝑐 as above, we define 𝑧𝑖 = 𝑐/√𝑡𝑖. Then, crossing an upper bound with
𝐵𝑖,𝑗 ≥ 𝑏𝑗 − 𝑐 later at analysis 𝑗 > 𝑖 is equivalent to

𝑍𝑖,𝑗 = 𝐵𝑖,𝑗
√𝑡𝑖,𝑗

≥ 𝑏𝑗 − 𝑐
√𝑡𝑖,𝑗

=
𝑢𝑗√𝑡𝑗 − 𝑧𝑖

√𝑡𝑖
√𝑡𝑖,𝑗

.

The incremental 𝑍-value upper and lower bounds are defined respectively by

𝑢𝑖,𝑗(𝑧𝑖) =
𝑢𝑗√𝑡𝑗 − 𝑧𝑖

√𝑡𝑖
√𝑡𝑖,𝑗

(10.8)

and

10.4 Conditional power and conditional error 119

𝑙𝑖,𝑗(𝑧𝑖) =
𝑙𝑗√𝑡𝑗 − 𝑧𝑖

√𝑡𝑖
√𝑡𝑖,𝑗

. (10.9)

10.4.1 Application to the CAPTURE trial

We now examine the observations after the initial interim that would be
required to cross the bounds for the original design. The function gsCP()
computes a new set of boundaries 𝑙𝑖,𝑗 and 𝑢𝑖,𝑗 from Equation 10.8 and Equa-
tion 10.9 based on results at interim 𝑖. Values of 𝜃 for which conditional power
is computed are, by default,

• 𝜃 = 0, for conditional error.
• 𝜃 = ̂𝜃 to compute conditional power at the interim trend as in, for example,

Bauer and Köhne [Bauer and Kohne, 1994], Proschan and Hunsberger
[Proschan and Hunsberger, 1995] and Cui, Hung and Wang [Cui et al.,
1999].

• 𝜃 = 𝛿, the treatment effect at which the trial was originally powered, as in
Liu and Chi [Liu and Chi, 2001].

xCP1 <- gsCP(x = CAPTURE, i = 1, zi = z[1])

We compute the conditional power after the first interim analysis based on
the interim estimate of 𝜃,
sum(xCP1$upper$prob[, 1])
#> [1] 0.9999172

the conditional error when 𝜃 = 0,
sum(xCP1$upper$prob[, 2])
#> [1] 0.2449957

and the conditional power based on 𝜃 = 𝛿 where 𝛿 is the value for which the
trial was originally powered.
sum(xCP1$upper$prob[, 3])
#> [1] 0.9577563

The probability of crossing at the second interim analysis given the first is
the same as previously computed in Section 10.3, interim treatment effect
size, 𝜃 = 𝜃1, the effect size originally powered for, and 𝜃 = 0, respectively.
xCP1$upper$prob[1, 1]
#> [1] 0.905619

simpCPwrHat[1]
#> [1] 0.905619

120 10 Conditional power and B-values

xCP1$upper$prob[1, 3]
#> [1] 0.5595968

simpCPwr1[1]
#> [1] 0.5596153

xCP1$upper$prob[1, 2]
#> [1] 0.1028575

simpCError[1]
#> [1] 0.1028575

As you can see, the conditional probability of success varies considerably
depending on the value of 𝜃. We will see later that there is substantial uncer-
tainty concerning 𝜃 at the first interim, thus calling into question use of any
particular 𝜃 value to compute conditional power.

Chapter 11

Bayesian design properties

All of the properties of group sequential designs we have considered so far
have depended on knowing an exact value 𝜃 measuring treatment effect. Some
evaluations may benefit from taking into account uncertainty concerning 𝜃.
Rather than assuming a fixed value of 𝜃 to compute quantities such as power,
Type I error and expected sample size, we consider these quantities based on
a prior distribution for 𝜃. Power and Type I error are replaced by probability
of success when averaging over a prior distribution. By assigning a value to a
trial outcome, the prior distribution for 𝜃 can be used to compute the value
of a trial design. Given built-in optimization functions in R, it is then easy to
apply gsDesign functions to optimize specific characteristics of a trial design
such as a futility bound or spending function.

After an interim result, we can again update the uncertainty about 𝜃 by
computing a posterior distribution. Conditional power can be replaced by
predictive power by averaging conditional power over this posterior distribu-
tion. The value of the trial can be replaced by the predictive value which
conditions on an interim outcome. We can also compute prediction intervals
for future trial results conditioned on an interim outcome. All of these mea-
sures can be based on a specific interim result or (blinded) knowledge that
no trial boundary has been crossed. The latter may be particularly useful for
a sponsor to update their internal estimates for the ultimate probability that
a trial is successful.

In summary, the following questions may be answered using a Bayesian ap-
proach:

• What is the probability of success of the trial?
• Based on a specified utility function, what is the value of a trial design?
• What is the posterior for 𝜃 given an interim result?
• What is the predictive distribution of future observations given an interim

result?
– What is the predictive probability of success?

121

122 11 Bayesian design properties

– Can we compute prediction intervals for future results?
– What is the value of a trial conditional on the interim result?

Examples in this section compute answers to all of these questions when
framed in terms of a particular trial.

11.1 Normal densities

The primary tool for computing group sequential probabilities is application
of numerical integration of a normal density function. The normalGrid()
function is a lower-level function used by gsProbability() and gsDesign()
that is normally obscured from the user. For Bayesian computations with a
normal prior distribution, such as here, it can be quite useful. Since this also
has many potential applications in areas - not restricted to group sequen-
tial design - we have made this function available to users. The reason for
making a separate function rather than just using the R function pnorm()
is that normalGrid() computes grid weights for numerical integration using
Simpon’s method as recommended by Jennison and Turnbull in Chapter 19
[Jennison and Turnbull, 2000]. Figure 11.1 shows a plot of weights for nu-
merical integration from a standard normal distribution as generated below.
We can integrate out the expected value of a function of a standard normal
distribution by multiplying the value of the function at each point on the
grid by the grid weights and summing to integrate. This is illustrated by
computing the 𝐸{𝑍2} = 1 below. The density evaluated at values in g$z are
stored in g$density, if needed.
library(gsDesign)

g <- normalGrid(mu = 0, sigma = 1)
sum(g$z^2 * g$wgts)
#> [1] 1.000001

plot(gz, gwgts)

11.1 Normal densities 123

−6 −4 −2 0 2 4 6

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

g$z

g$
w

gt
s

Figure 11.1: Weights for numerical integration from a standard normal dis-
tribution.

We demonstrate the use of normalGrid() to generate a prior distribution for
the parameter of interest in a group sequential design below. This will then
be used in various Bayesian applications in later sections. Here we simply
describe the use of the normalGrid() function used to work with normal
densities.

Next we plot normal densities with mean 0 and 0.5 and standard deviations
1 and 2, respectively, in Figure 11.2 and Figure 11.3.
g <- normalGrid(mu = 0, sigma = 1)
plot(gz, gwgts, main = "mean=0, standard deviations=1")

124 11 Bayesian design properties

−6 −4 −2 0 2 4 6

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

mean=0, standard deviations=1

g$z

g$
w

gt
s

Figure 11.2

g <- normalGrid(mu = 0.5, sigma = 2)
plot(gz, gwgts, main = "mean=0.5, standard deviations=2")

11.1 Normal densities 125

−10 −5 0 5 10

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

mean=0.5, standard deviations=2

g$z

g$
w

gt
s

Figure 11.3

We then add a normal density with range -5 to -2 with mean -4 and standard
deviation 1.5 in Figure 11.4.
d1 <- normalGrid()
d2 <- normalGrid(mu = 0.5, sigma = 2)
minx <- min(d1$z, d2$z)
maxx <- max(d1$z, d2$z)
plot(
x = d2$z,
y = d2$density,
type = "l",
xlim = c(minx, maxx),
ylim = c(0, max(d1$density)),
xlab = "z",

126 11 Bayesian design properties

ylab = "Density",
lwd = 2,
main = "Normal density examples."

)
lines(x = d1$z, y = d1$density, lty = 2, lwd = 2)
d3 <- normalGrid(mu = -4, sigma = 1.5, bounds = c(-5, -2))
lines(x = d3$z, y = d3$density, lwd = 2, lty = 3)
legend(
x = c(4, 7),
y = c(0.27, 0.4),
lty = c(2, 1, 3),
lwd = 2,
legend = c("d1", "d2", "d3")

)

11.2 The posterior distribution for 𝜃 127

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Normal density examples.

z

D
en

si
ty

d1
d2
d3

Figure 11.4

11.2 The posterior distribution for 𝜃

For a given parameter sample space of real-values Θ, denote the prior distri-
bution function for 𝜃 ∈ Θ at the beginning of the trial by 𝐺(𝜃). This may
represent a continuous or discrete distribution or a combination of the two.
The joint sub-density of 𝜃, the interim test statistics not crossing a bound
prior to analysis 𝑖, and an interim value 𝑧 at analysis 𝑖, 1 ≤ 𝑖 ≤ 𝑘 is

𝑝𝑖(𝑧|𝜃) 𝑑
𝑑𝜃𝐺(𝜃).

128 11 Bayesian design properties

To obtain a posterior distribution, we integrate over all possible values of
𝜃 ∈ Θ to get a marginal density for 𝑍𝑖 = 𝑧 at analysis 𝑖 for the denominator
in the following equation for the posterior distribution of 𝜃 given no boundary
crossing prior to analysis 𝑖 and the interim test statistic 𝑍𝑖 = 𝑧, 1 ≤ 𝑖 ≤ 𝑘:

𝑑𝐺𝑖(𝜃|𝑧) = 𝑝𝑖(𝑧|𝜃)𝑑𝐺(𝜃)/𝑑𝜃
∫𝜂∈Θ 𝑝𝑖(𝑧|𝜂)𝑑𝐺(𝜂)/𝑑𝜂𝐺𝑖(𝑧, 𝜂) . (11.1)

When a sufficient statistic ̂𝜃 is available to estimate 𝜃 at an interim analysis,
the marginal distribution can be factored into the joint distribution of the
sufficient statistic ̂𝜃 and 𝜃 times a function of the individual data points that
is independent of 𝜃. This means computing the posterior distribution can
ignore the individual data points. Proschan, Lan and Wittes [Proschan et al.,
2006] show the posterior distribution under the assumption of a normal prior.
Their formulation is that 𝜃 = 𝐸{𝑍𝑘}, where 𝑍𝑘 is the test statistic at the final
planned analysis. The formulation here has √𝑛𝑘𝜃 = 𝐸{𝑍𝑘}, and we translate
the Proschan, Lan and Wittes formulation appropriately. Assuming the prior
distribution

𝜃 ∼ 𝑁(𝜃0, 𝜎2
0)

the posterior distribution conditioning on an interim test statistic 𝑧𝑖 (or 𝐵𝑖 =
𝑏 = 𝑧𝑖

√𝑡𝑖) at interim 𝑖 for 1 ≤ 𝑖 ≤ 𝑘 is normal with mean

𝐸{𝜃|𝑍𝑖 = 𝑧𝑖} = 𝜃0/𝜎2
0 + √𝑛𝑖𝑧𝑖

1/𝜎2
0 + 𝑛𝑖

= 𝜃0/𝜎2
0 + √𝑛𝑘𝑏

1/𝜎2
0 + 𝑛𝑖

(11.2)

and variance

Var{𝜃|𝑍𝑖 = 𝑧𝑖} = (1/𝜎2
0 + 𝑛𝑖)−1. (11.3)

Note that the conditional variance does not depend on 𝑧𝑖. The value 𝐸{𝜃|𝑍𝑖 =
𝑧𝑖} is a weighted average of the prior mean and an estimate of 𝜃 based on
data. The weights are the statistical information (inverse of the variance) for
each estimate. The total statistical information for the combined estimate
(inverse of the posterior variance) is the sum of the statistical information for
each estimate.

To demonstrate the above calculation, we again consider the CAPTURE
study and assume a normal prior distribution for 𝜃 with a mean of .4𝜃1
where 𝜃1 is the alternate hypothesis value of 𝜃 and an uninformative standard
deviation of 6𝜃1. Code to generate this prior using normalGrid() is as follows:

11.2 The posterior distribution for 𝜃 129

n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)
x <- gsDesign(
k = 3,
n.fix = n.fix,
beta = 0.2,
sfupar = -3

)
x <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3

)
x <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3

)
CAPTURE <- gsDesign(
k = 3,
n.fix = n.fix,
timing = c(350, 700) / x$n.I[3],
beta = 0.2,
sfupar = -3,
endpoint = "binomial",
delta1 = 0.05

)

CAPTURE$delta
#> [1] 0.07565793

sigma1sq <- 6 * CAPTURE$delta^2
mu <- 0.4 * CAPTURE$delta
prior <- normalGrid(mu = mu, sigma = sqrt(sigma1sq))

Next we compute the posterior distribution and, following each analysis, the
posterior density. We then see the posterior probability that 𝜃 ≤ 0 a priori
and after each analysis and compare this to the nominal 𝑝-value for each z-
statistic. The prior we have used is relatively uninformative, so the 𝑝-values
and posterior probabilities are quite similar. The slight favorable prior lowers
the posterior probability compared to nominal 𝑝-values. The interim data
and statistics are as we have computed them in Chapter 9.

130 11 Bayesian design properties

n1 <- c(175, 353, 532, 635)
n2 <- c(175, 347, 518, 630)
x1 <- c(30, 55, 84, 101)
x2 <- c(14, 37, 55, 71)
z <- testBinomial(x1 = x1, x2 = x2, n1 = n1, n2 = n2)

n <- n1 + n2
postmean <- (mu / sigma1sq + z * sqrt(n)) / (1 / sigma1sq + n)
postvar <- 1 / (1 / sigma1sq + n)
round(postmean, 3)
#> [1] 0.130 0.071 0.075 0.067

round(sqrt(postvar), 3)
#> [1] 0.051 0.037 0.030 0.028

round(pnorm(-c(mu, postmean) / sqrt(c(sigma1sq, postvar))), 4)
#> [1] 0.4351 0.0058 0.0275 0.0068 0.0081

round(1 - pnorm(z), 4)
#> [1] 0.0049 0.0271 0.0067 0.0081

Next we compute the posterior density for 𝜃 at each analysis using Equa-
tion 11.2 and Equation 11.3.
post1den <- normalGrid(mu = postmean[1], sigma = sqrt(postvar[1]))
post2den <- normalGrid(mu = postmean[2], sigma = sqrt(postvar[2]))
post3den <- normalGrid(mu = postmean[3], sigma = sqrt(postvar[3]))
post4den <- normalGrid(mu = postmean[4], sigma = sqrt(postvar[4]))

In order to do a check, we could have also computed the posterior after the
first interim analysis with
post2 <- gsPosterior(x = CAPTURE, i = 2, zi = z[2], prior = prior)

If 𝑧 represents a set of values (e.g., an interval) and 𝑝𝑖(𝑧|𝜃) the probability
that 𝑍𝑖 ∈ 𝑧 given 𝜃, then we can still apply the equation posterior. The
likelihood is computed for not crossing a bound prior to analysis i and being
in the interval specified in the 2-values specified in zi. The default if zi
is not given is to use the interval between the upper an lower bound at the
analysis specified in i, as in the following example. We compute such posterior
distributions for the first 3 analyses.
CAPTURE3IA <- gsDesign(
k = 4,
n.I = c(350, 700, 1050, CAPTURE$n.I[3]),
n.fix = n.fix,
maxn.IPlan = CAPTURE$n.I[3],
sfupar = -3,

11.2 The posterior distribution for 𝜃 131

beta = 0.2
)

post1b <- gsPosterior(x = CAPTURE3IA, i = 1, prior = prior)
post2b <- gsPosterior(x = CAPTURE3IA, i = 2, prior = prior)
post3b <- gsPosterior(x = CAPTURE3IA, i = 3, prior = prior)

Finally, we plot the prior and posteriors where the interim statistics are known
in black as well as the posteriors when it is only known that a boundary has
not been crossed in red. Since there is less information in the latter, red
posteriors, they are more disperse than the corresponding posterior when the
interim test statistic is known. The central location for the latter posteriors
is also closer to the original prior than the posteriors based on exact results
where the posteriors more shift to match the data.
plot(
post4den$z, post4den$density,
type = "l", lty = 5,
xlab = expression(theta), ylab = "Density"

)
lines(post3den$z, post3den$density, lty = 4)
lines(post2den$z, post2den$density, lty = 3)
lines(post1den$z, post1den$density, lty = 2)
lines(prior$z, prior$density)
legend(
x = c(-0.1, -0.03), y = c(6, 14), lty = c(1:5), lwd = 2,
legend = c(
"Prior", "Analysis 1", "Analysis 2", "Analysis 3", "Analysis 4"

)
)
lines(post1b$z, post1b$density, lty = 2, col = 2)
lines(post2b$z, post2b$density, lty = 3, col = 2)
lines(post3b$z, post3b$density, lty = 4, col = 2)

132 11 Bayesian design properties

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0
2

4
6

8
10

12
14

θ

D
en

si
ty

Prior
Analysis 1
Analysis 2
Analysis 3
Analysis 4

Figure 11.5

11.3 Bayes credible intervals

A Bayes credible interval can be computed using the posterior distribution for
𝜃. Let 𝐺−1

𝑖 (⋅|𝑍𝑖 = 𝑧𝑖) be the inverse of 𝐺𝑖(⋅|𝑍𝑖 = 𝑧𝑖). For an interval at level
1 − 𝛼/2, the Bayes credible interval for 𝜃 given 𝑍𝑖 = 𝑧𝑖 is (𝐺−1

𝑖 (𝛼/2|𝑍𝑖 =
𝑧𝑖), 𝐺−1

𝑖 (1 − 𝛼/2|𝑍𝑖 = 𝑧𝑖). We continue the example with a normal prior
and posterior. The Bayes credible interval is simply quantiles from a normal
distribution with parameters Equation 11.2 and Equation 11.3. Extending
our previous example, this can be computed for each analysis of CAPTURE
using the inverse standard normal function qnorm() as follows
lCredInt <- postmean + qnorm(0.025) * sqrt(postvar)
uCredInt <- postmean + qnorm(0.975) * sqrt(postvar)

11.4 Predictive power 133

CredInt <- as.matrix(cbind(lCredInt, postmean, uCredInt))
rownames(CredInt) <- paste("Analysis", 1:4)
colnames(CredInt) <- c("Lower", "Mean", "Upper")
CredInt
#> Lower Mean Upper
#> Analysis 1 0.028963082 0.12962419 0.2302853
#> Analysis 2 -0.001507327 0.07107813 0.1436636
#> Analysis 3 0.015387474 0.07505169 0.1347159
#> Analysis 4 0.012299533 0.06678258 0.1212656

11.4 Predictive power

The credible intervals for 𝜃 are fairly wide, suggesting that computing condi-
tional power based on a fixed value of 𝜃 may be misleading. Predictive power
extends the concept of conditional power by incorporating uncertainty about
the parameter 𝜃 into computations. Recall that we have denoted the con-
ditional probability of crossing an efficacy boundary at analysis 𝑗 given an
interim test statistic 𝑧𝑖 at analysis 𝑖 < 𝑗 and parameter 𝜃 as 𝛼𝑖,𝑗(𝜃|𝑧𝑖). Given
a posterior distribution 𝐺𝑖(𝜃|𝑧𝑖) for 𝜃 after observing an interim test statistic
𝑧𝑖 defined on some set of values Θ, the predictive probability of crossing the
efficacy boundary at analysis 𝑗 > 𝑖 is defined in Equation 11.4.

𝛼𝑖,𝑗(𝑧𝑖, 𝐺𝑖) = ∫
Θ

𝛼𝑖,𝑗(𝜃|𝑧𝑖)𝑑𝐺𝑖(𝜃|𝑧𝑖). (11.4)

Predictive probability is computed using the function gsPP() as demon-
strated below. The first line computes the predictive power to cross a bound at
any future analysis. The second line, by specifying total=FALSE, computes
the predictive power of crossing a bound at the individual future planned
analyses.
gsPP(
x = CAPTURE,
zi = z[1],
i = 1,
theta = prior$z,
wgts = prior$wgts

)
#> [1] 0.9633891

gsPP(
x = CAPTURE,
zi = z[1],

134 11 Bayesian design properties

i = 1,
theta = prior$z,
wgts = prior$wgts,
total = FALSE

)
#> [,1]
#> [1,] 0.7984714
#> [2,] 0.1649177

11.5 Predictive distribution for the normal case

For 1 ≤ 𝑖 < 𝑗 ≤ 𝐾, the simple conditional distribution for 𝐵𝑗 given 𝐵𝑖 = 𝑏 is
easily extended to a predictive distribution when the prior for 𝜃 is normally
distributed. Given 𝐵𝑖 = 𝑏, we consider that

𝐵𝑗 = 𝑏 + 𝐵𝑖,𝑗 = 𝑏 + (𝑡𝑗 − 𝑡𝑖)
√𝑛𝑘𝜃 + (𝐵𝑖,𝑗 − (𝑡𝑗 − 𝑡𝑖)

√𝑛𝑘𝜃).

Conditioning on 𝜃, 𝐵𝑖,𝑗 − (𝑡𝑗 − 𝑡𝑖)
√𝑛𝑘𝜃 ∼ 𝑁(0, 𝑡𝑗 − 𝑡𝑖) and because this

does not depend on 𝜃 it has the same unconditional distribution. We know
the posterior distribution for 𝜃 given 𝐵𝑖 = 𝑏 is normal with mean from
Equation 11.2 and variance from Equation 11.3. Thus, we derive that the
predictive distribution for 𝐵𝑗 given 𝐵𝑖 = 𝑏 is normal with

𝐸{𝐵𝑗|𝐵𝑖 = 𝑏} = 𝑏 + 𝐸{𝐵𝑖,𝑗} = 𝑏 + √𝑛𝑘(𝑡𝑗 − 𝑡𝑖)𝐸{𝜃|𝐵𝑖 = 𝑏} (11.5)

and

Var{𝐵𝑗|𝐵𝑖 = 𝑏} = (𝑡𝑗 − 𝑡𝑖) (1 + 𝑛𝑘(𝑡𝑗 − 𝑡𝑖)
1/𝜎2

0 + 𝑛𝑖
) (11.6)

We now the compute predictive probability of a positive trial at the second
interim analysis of the CAPTURE trial using this posterior distribution and
compare to gsPP(). Recall that we have already computed the posterior mean
and variance for 𝜃 at each analysis in postmean and postvar, respectively,
and the proportion of final planned statistical information at the planned
analyses in ti.
gsPP(
x = CAPTURE,
zi = z[2],
i = 2,

11.6 Prediction intervals 135

theta = prior$z,
wgts = prior$wgts

)
#> [1] 0.7643489

ti <- c((n1 + n2)[1:2] / CAPTURE$n.I[3], 1)

b <- z[2] * sqrt(ti[2])
pimean <- b + postmean[2] * (ti[3] - ti[2]) * sqrt(CAPTURE$n.I[3])
pivar <- (postvar[2] + 1) * (ti[3] - ti[2])
pivar <- (postvar[2] * (CAPTURE$n.I[3] - 700) + 1) * (ti[3] - ti[2])
bfinal <- CAPTURE$upper$bound[3]
pnorm(bfinal, mean = pimean, sd = sqrt(pivar), lower.tail = FALSE)
#> [1] 0.764337

The predictive probability for a positive final outcome is slightly below the
originally planned power of 80%, but probably not sufficient amount to raise
substantial concern.

11.6 Prediction intervals

Prediction intervals for a future test statistic or final treatment effect can
be computed using the inverse of the predictive distribution for 𝐵𝑗 given
𝐵𝑖, 1 ≤ 𝑖 < 𝑗 ≤ 𝐾. We continue the above normal distribution example
using Equation 11.5 and Equation 11.6. We will ignore intervening interim
analysis decisions in this computation, which conditions on the results at
the first interim and computes a 90% prediction interval. The inverse normal
distribution qnorm() is applied as for the Bayes credible interval computation
in Section 11.3.
bpi <- pimean + qnorm(c(0.05, 0.95)) * sqrt(pivar)
bpi
#> [1] 1.052884 4.422583

While the above computation is useful given a normal prior, we also have
the gsPI() function to produce a prediction interval for any future analysis
given an interim result. Note that the prediction for future analyses again
ignores any intervening interim boundaries. The argument i is the interim we
condition on, while zi is the test statistic at that analysis. The analysis we are
predicting for is indicated by j, and the group sequential design by x. We first
reproduce the interval above and then examine prediction intervals for the
second and final analyses based on the first interim. Finally, the default level
= 0.95 produces a 95% prediction interval. By specifying level = 0 we get
a point estimate of the predicted outcome for the second interim analysis

136 11 Bayesian design properties

based on the first interim. While the second interim 𝑍-value falls well within
the prediction interval based on the first interim, it is quite different than
the predicted outcome. Thus, the prediction interval suggests the differences
between first and second analysis trends are consistent with variability early
in the study.
gsPI(
level = 0.9,
x = CAPTURE,
i = 2,
j = 3,
zi = z[2],
theta = prior$z,
wgts = prior$wgts

)
#> [1] 1.052837 4.422774

gsPI(
level = 0.9,
x = CAPTURE,
i = 1,
j = 2,
zi = z[1],
theta = prior$z,
wgts = prior$wgts

)
#> [1] 1.925884 5.151808

gsPI(
level = 0.9,
x = CAPTURE,
i = 1,
j = 3,
zi = z[1],
theta = prior$z,
wgts = prior$wgts

)
#> [1] 2.182131 7.841837

gsPI(
level = 0,
x = CAPTURE,
i = 1,
j = 2,
zi = z[1],
theta = prior$z,

11.7 Probability of success 137

wgts = prior$wgts
)
#> [1] 3.538895

z[2]
#> [1] 1.925467

The prediction interval for the standardized treatment effect 𝜃 divides the
above interval by √𝑛3. Since the analysis we are predicting for is the final
analysis, 𝑏3 = 𝑡3𝑧3 = 𝑧3 and the prediction intervals are identical.
zpi <- bpi / sqrt(ti[3])
thetapi <- zpi / sqrt(CAPTURE$n.I[3])
zpi
#> [1] 1.052884 4.422583

thetapi
#> [1] 0.0276506 0.1161449

The prediction interval is quite wide which is perhaps counterintuitive given
the the predictive probability 0.764 from the previous section.

11.7 Probability of success

The probability of a positive trial depends on the distribution of outcomes in
the control and experimental groups. The probability of a positive trial given
a particular parameter value 𝜃 was defined in

𝛼𝑖(𝜃) = 𝑃𝜃{{𝑍𝑖 ≥ 𝑢𝑖} ∩𝑖−1
𝑗=1 {𝑙𝑗 < 𝑍𝑗 < 𝑢𝑗}}, 𝑖 = 1, 2, … , 𝑘.

and

𝛼(𝜃) ≡
𝑘

∑
𝑖=1

𝛼𝑖(𝜃).

as

𝛼(𝜃) =
𝐾

∑
𝑖=1

𝑃𝜃{{𝑍𝑖 ≥ 𝑏𝑖} ∩𝑖−1
𝑗=1 {𝑎𝑗 < 𝑍𝑗 < 𝑏𝑗}}.

If we consider 𝜃 to have a given prior distribution at the beginning of the
trial, we can compute an unconditional probability of success for the trial.
In essence, since we do not know if the experimental treatment works better

138 11 Bayesian design properties

than control treatment, we assign some prior beliefs about the likelihood that
experimental is better than control and use those along with the size of the
trial to compute the probability of success. The prior distribution for 𝜃 can be
discrete or continuous. If the distribution is discrete, we define 𝑚 + 1 values
𝜃0 < 𝜃2 … < 𝜃𝑚 and assign prior probabilities 𝑃{𝜃 = 𝜃𝑗}, 0 ≤ 𝑗 ≤ 𝑚 such
that ∑𝑚

𝑗=1 𝑃{𝜃𝑗} = 1. The probability of success for the trial is then defined
as

POS =
𝑚

∑
𝑗=0

𝑃{𝜃 = 𝜃𝑗}𝛼(𝜃𝑗) (11.7)

The simplest practical example is perhaps assuming a 2-point prior where the
prior probability of the difference specified in the alternate hypothesis used
to power the trial is 𝑝 and the prior probability of no treatment difference is
1 − 𝑝. Suppose the trial is designed to have power 1 − 𝛽 = 𝛼(𝛿) when 𝜃 = 𝛿
and Type I error 𝛼 = 𝛼(0) when 𝜃 = 0. Then the probability of success for
the trial is

POS = 𝑝 × (1 − 𝛽) + (1 − 𝑝) × 𝛼.

Assuming a 70% prior probability of a treatment effect 𝛿, a 30% prior probabil-
ity of no treatment effect, power of 90% and Type I error of 2.5% results in an
unconditional probability of a positive trial of 0.7×0.9+0.3×0.025 = 0.6375.
In this case, it is arguable that POS should be defined as 0.7 × 0.9 = 0.63
since the probability of a positive trial when 𝜃 = 0 should not be considered
a success. This alternative definition becomes ambiguous when the prior dis-
tribution for 𝜃 becomes more diffuse. We will address this issue below in the
discussion of the value of a trial design.

We consider a slightly more ambitious example and show how to use
gsProbability() to compute Equation 11.7. We derive a design using
gsDesign(), in this case using default parameters. We assume the possible
parameter values are 𝜃𝑖 = 𝑖 × 𝛿 where 𝛿 is the value of 𝜃 for which the trial
is powered and 𝑖 = 0, 2, … , 6. The respective prior probabilities for these 𝜃𝑖
values are assumed to be 1/20, 2/20, 2/20, 3/20, 7/20, 3/20 and 2/20. We
show the calculation and then explain in detail.
y <- gsDesign()
theta <- y$theta[2] * array(0:6) / 4
ptheta <- c(1, 2, 2, 3, 7, 3, 2) / 20
x <- gsProbability(theta = theta, d = y)
one <- array(1, 3)
pos <- one %*% x$upper$prob %*% ptheta
pos

11.7 Probability of success 139

#> [,1]
#> [1,] 0.7136783

Note that theta[2] is the value 𝛿 for which the trial is powered as noted in
the first example in the introduction Section 4.1. The last 4 lines can actually
be replaced by the function POS: gsPOS(x, theta, ptheta). For those not
familiar with it %% represents matrix multiplication, and thus the code one
%% x$upper$prob %% ptheta is doing the computation

𝑚
∑
𝑗=0

𝑃{𝜃𝑗}
𝐾

∑
𝑖=0

𝛼𝑖(𝜃𝑗).

For a prior distribution that is continuous with density 𝑓(𝜃) we define

POS = ∫
∞

−∞
𝑓(𝜃)𝛼(𝜃)𝑑𝜃. (11.8)

Numerical integration is required to implement this calculation, but we can
still use the pos() function just defined. For instance, assuming 𝜃 ∼ 𝑁(𝜇 =
𝛿, 𝜎2 = (𝛿/2)2) we can use normalGrid() from the gsDesign package to
generate a grid and normal densities on that grid that can be used to perform
numerical integration. For this particular case
y <- gsDesign()
delta <- y$theta[2]
g <- normalGrid(mu = delta, sigma = delta / 2)
plot(gz, gwgts, main = "Integration weights for normal density.")

140 11 Bayesian design properties

−5 0 5 10

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Integration weights for normal density.

g$z

g$
w

gt
s

Figure 11.6

gsPOS(y, gz, gwgts)
#> [1] 0.7484896

This computation yields a probability of success of 0.748. The normalGrid()
function is a lower-level function used by gsProbability() and gsDesign()
that is normally obscured from the user. For Bayesian computations with
a normal prior distribution, such as here, it can be quite useful as in the
above example. The values returned above in g$wgts are the normal density
multiplied by weights generated using Simpson’s rule. The plot generated by
the above code
g <- normalGrid(mu = 0, sigma = 1)
plot(gz, gwgts)

11.7 Probability of success 141

−6 −4 −2 0 2 4 6

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

g$z

g$
w

gt
s

Figure 11.7

shows that these values alternate as higher and lower values about a smooth
function. If you compute sum(g$wgts) you will confirm that the approxi-
mated integral over the real line of this density is 1, as desired.

To practice with this, assume a more pessimistic prior with 𝜇 = 𝜎 = 𝛿/2 to
obtain a probability of success of 0.428.

We generalize Equation 11.7 and Equation 11.8 by letting 𝐹() denote the
cumulative distribution function for 𝜃 and write

POS = ∫
∞

−∞
𝛼(𝜃)𝑑𝐹(𝜃).

142 11 Bayesian design properties

This notation will be used in further discussions to provide formulas applica-
ble to both continuous and discrete distributions.

11.8 Updating probability of success based on blinded
results

Futility bounds are often set up to be informative about emerging treatment
effects. That is, a positive trend is often required to pass a futility bound.
Efficacy bounds usually are only informative to a lesser extent, but knowing
that an efficacy bound has not been crossed at an interim analysis generally
rules out an extremely positive effect after early interim analyses and a mod-
erately positive effect later in the trial. Thus, knowing that a trial has not
crossed a futility or efficacy bound at an interim analysis can be helpful in
updating the probability of success we have computed above. In this subsec-
tion we will restrict consideration to the probability of ultimate trial success.
For 1 ≤ 𝑖 < 𝐾 we denote the event that no boundary has been crossed at or
before analysis 𝑖 by

𝐴𝑖 = ∩𝑖−1
𝑗=1{𝑎𝑗 < 𝑍𝑗 < 𝑏𝑗}

The probability of observing 𝐴𝑖 is

𝑃{𝐴𝑖} = 1 − ∫
𝑖

∑
𝑗=1

(𝛼𝑗(𝜃) + 𝛽𝑗(𝜃))𝑑𝐹(𝜃)

Letting 𝐵 denote the event that the trial crosses an upper bound at or before
the end of the trial and before crossing a lower bound compute

𝑃{𝐴𝑖 ∩ 𝐵} = ∫
𝐾

∑
𝑗=𝑖+1

𝛼𝑗(𝜃)𝑑𝐹(𝜃)

Based on these 2 equations, we can now compute for 1 ≤ 𝑖 < 𝐾 the condi-
tional probability of a positive trial given that no boundary has been crossed
by interim 𝑖 as

𝑃{𝐵|𝐴𝑖} = 𝑃{𝐴𝑖 ∩ 𝐵}/𝑃{𝐴𝑖}.

Calculations for the 2 probabilities needed are quite similar to the gsPOS()
function considered in the previous subsection. The conditional probability
of success is computed using the function gsCPOS(). For the case considered

11.9 Calculating the value of a clinical trial design 143

previously with 𝜃 ∼ 𝑁(𝜇 = 𝛿, 𝜎 = 𝛿/2) and a default design we had a
probability of success of 0.748. The following code shows that if neither trial
boundary is crossed at the first interim, the updated (posterior) probability
of success is 0.733. After 2 analyses, the posterior probability of success is
0.669.
y <- gsDesign()
delta <- y$theta[2]
g <- normalGrid(
bounds = c(-30, 30) * delta / 2,
mu = delta,
sigma = delta / 2

)
gsPOS(x = y, theta = g$z, wgts = g$wgts)
#> [1] 0.7484896

gsCPOS(1, y, theta = g$z, wgts = g$wgts)
#> [1] 0.7331074

gsCPOS(2, y, theta = g$z, wgts = g$wgts)
#> [1] 0.6688041

To ensure a higher conditional probability of success for the trial, a more
aggressive futility bound could be employed at the expense of requiring an
increased sample size to maintain the desired power. The code y$n.I shows
that the default design requires an inflation factor of 1.07 for the sample
size compared to a fixed design with the same Type I error and power. By
employing an aggressive Hwang-Shih-DeCani spending function with 𝛾 = 1
for the futility bound, the sample size inflation factor is increased to 1.23
((y <- gsDesign(sflpar=1))). The probability of success for this design at
the beginning of the trial using the same prior distribution as above is still
0.748, but the conditional probability of success after not hitting a boundary
by interim 1 (interim 2) is now 0.788 (0.761). While there are many other
considerations in choosing a futility bound and other prior distributions give
other results, this example suggests that something more aggressive than the
default futility bound in gsDesign() may be desirable.

11.9 Calculating the value of a clinical trial design

Here we generalize the concept of the probability of success of a trial given
above to the value of a trial. We assume that a trial that stops with a positive
result with information 𝐼𝑖 at analysis 𝑖 of a trial when the true treatment
effect is 𝜃 can be given by a function 𝑢(𝜃, 𝐼𝑖), 1 ≤ 𝑖 ≤ 𝐾. Now the formula
for probability of success can be generalized to

144 11 Bayesian design properties

𝑈 = ∫
∞

−∞
𝑓(𝜃)

𝐾
∑
𝑖=1

𝛼𝑖(𝜃)𝑢(𝜃, 𝐼𝑖)𝑑𝜃. (11.9)

Note that the value above is only assumed to depend on whether or not a
boundary is crossed and when it is crossed, not the actual treatment effect at
the time the study stops and not other factors, such as safety, or continuing
the trial when a boundary has been crossed. A more general formula that
incorporates a costs that are incurred whether or not a trial is positive. If
this formula also discounted future costs and benefits to present-day values,
it would be termed a net present value and can be defined in a simplified
form as shown below. Here we assume that the final upper and lower bounds
are the same so that a bound is crossed with probability 1 at some point in
the trial. This formulation

NPV = ∫
∞

−∞
𝑓(𝜃)

𝐾
∑
𝑖=1

[𝛼𝑖(𝜃)𝑢(𝜃, 𝐼𝑖) − (𝛼𝑖(𝜃) + 𝛽𝑖(𝜃))𝑐(𝜃, 𝐼𝑖)] 𝑑𝜃.

The function below computes the integral Equation 11.9. For this implemen-
tation, must be a scalar, a vector of length or a matrix of the same dimension
as (rows and columns) rather than a function.
value <- function(x, theta, wgts, u, c) {
x <- gsProbability(theta = theta, d = x)
one <- array(1, x$k)
totprob <- x$upper$prob + x$lower$prob
for (i in 1:length(x$theta)) {
totprob[x$k, i] <- totprob[x$k, i] + (1 - sum(totprob[, i]))

}
as.numeric(one %*% (u * x$upper$prob - c * totprob) %*% wgts)

}

We now consider the CAPTURE trial with the planned interim analyses
previously planned and the previously specified prior distribution for 𝜃. We
further assume a “utility” of a positive trial is linear in sample size and
equal to 900-n/3. The corresponding costs, including opportunity costs, are
assumed to be 30+n/15. These cost assumptions are simple and arbitrary,
primarily meant to inform as an example. The net value is found to be 234.1.
value(
x = CAPTURE,
theta = prior$z,
wgts = prior$wgts,
u = 900 - CAPTURE$n.I / 3,
c = 30 + CAPTURE$n.I / 15

11.10 Optimization example: selecting a futility bound 145

)
#> [1] 234.0738

11.10 Optimization example: selecting a futility bound

We finish with an example computing a futility bound that optimizes the
value of a design. We will assume the spending function for the efficacy bound
is fixed and and will select an optimal 𝛾 for a Hwang-Shih-DeCani spending
function for the lower bound. We allow the user to specify the number of
interim analyses as well as the desired Type I and Type II error and the
prior distribution for the treatment effect. The function provides the value of
a trial that stops for a positive result after enrolling patients when the true
treatment effect is . The previous value function is coded as:
valfn <- function(n.I, theta, vcon, ccon) {
return(list(
u = vcon[1] + n.I * vcon[2],
c = ccon[1] + n.I * ccon[2]

))
}
vcon <- c(900, -1 / 3)
ccon <- c(30, 1 / 15)

We now write a function to compute the value of designs where the only
thing changing between design inputs is the single-parameter for the lower-
bound spending function. Since the optimization function we will apply will
minimize the objective function, we let change the sign of the value when we
output the computed value of a design below.
lbValue <- function(

x = -2,
k = 3,
test.type = 4,
alpha = 0.025,
beta = 0.1,
astar = 0,
delta = 0,
n.fix = 1,
timing = 1,
sfu = sfHSD,
sfupar = -3,
sfl = sfHSD,
tol = 1e-06,
r = 18,

146 11 Bayesian design properties

f, theta, wgts, vcon, ccon) {
d <- gsDesign(
sflpar = x,
k = k,
test.type = test.type,
alpha = alpha,
beta = beta,
delta = delta,
n.fix = n.fix,
timing = timing,
sfu = sfu,
sfupar = sfupar,
sfl = sfl,
tol = tol,
r = r

)
val <- f(d$n.I, theta, vcon = vcon, ccon = ccon)
-value(x = d, theta = theta, wgts = wgts, u = val$u, c = val$c)

}

We first compute this value function for sfupar = -2, as before. Note since
we have not restricted the interims to be a 350 and 700 patients, the value is
slightly different than before with the sample sizes shown below.
n.fix <- 1
lbValue(
x = -2,
k = 3,
beta = 0.2,
n.fix = n.fix,
timing = c(0.25, 0.5),
sfupar = -3,
f = valfn,
theta = prior$z,
wgts = prior$wgts,
vcon = vcon,
ccon = ccon

)
#> [1] 5.133372

ceiling(
gsDesign(
k = 3,
timing = c(0.25, 0.5),
sfupar = -3,
beta = 0.2,

11.10 Optimization example: selecting a futility bound 147

n.fix = n.fix
)$n.I / 2

) * 2
#> [1] 2 2 2

We can now find an optimal lower Hwang-Shih-DeCani bound and sample
size for the CAPTURE trial with interims after 25% and 50% of patients
enrolled. This is done by calling the R optimization function nlminb() in-
putting the appropriate parameters from above. We save the output from
nlminb() in the variable best. The expected value of the optimal design is
not terribly different from what we computed previously. This is in spite of
a fairly different and more conservative lower bound.
best <- nlminb(
start = -2,
objective = lbValue,
k = 3,
beta = 0.2,
n.fix = n.fix,
timing = c(0.25, 0.5),
sfupar = -3,
f = valfn,
theta = prior$z,
wgts = prior$wgts,
vcon = vcon,
ccon = ccon

)
-best$objective
#> [1] -4.133656

best$par
#> [1] -11.21022

OPTCAPTURE <- gsDesign(
sflpar = best$par,
k = 3,
beta = 0.2,
n.fix = n.fix,
timing = c(0.25, 0.5),
sfupar = -3

)
OPTCAPTURE$n.I
#> [1] 0.2551781 0.5103561 1.0207123

OPTCAPTURE$lower$bound
#> [1] -2.517904 -1.190569 2.001880

148 11 Bayesian design properties

The general recommendation is to consider optimal designs to ensure that
the final design you choose based on a variety of criteria provides a “value”
that is reasonably close to optimal. In the case of CAPTURE, the previously
planned bound that was more aggressive might be considered reasonably close
to the optimal design and therefore acceptable.

References

Keaven M. Anderson. Optimal spending functions for asymmetric group
sequential designs. Biometrical Journal, 49(3):337–345, 2007.

Keaven M. Anderson and Jason B. Clark. Fitting spending functions. Statis-
tics in Medicine, 29(3):321–327, 2010.

Peter Bauer and F. Kohne. Evaluation of experiments with adaptive interim
analyses. Biometrics, 50(4):1029–1041, 1994.

Center for Drug Evaluation and Research. Guidance for industry on dia-
betes mellitus-evaluating cardiovascular risk in new antidiabetic therapies
to treat type 2 diabetes. Technical report, United States Department of
Health and Human Services, Food and Drug Administration, 2008. URL
https://www.federalregister.gov/d/E8-30086.

Lu Cui, HM James Hung, and Sue-Jane Wang. Modifications of sample size
in group sequential clinical trials. Biometrics, 55(3):853–857, 1999.

Inc. Cytel. EAST 5. Cytel, Inc., Cambridge, MA, 2007.

Conor P Farrington and Godfrey Manning. Test statistics and sample size
formulae for comparative binomial trials with null hypothesis of non-zero
risk difference or non-unity relative risk. Statistics in Medicine, 9(12):
1447–1454, 1990.

Ian Gordon and Ray Watson. The myth of continuity-corrected sample size
formulae. Biometrics, 52(1):71–76, 1985.

Irving K Hwang, Weichung J Shih, and John S De Cani. Group sequen-
tial designs using a family of type 1 error probability spending functions.
Statistics in Medicine, 9(12):1439–1445, 1990.

Christopher Jennison and Bruce W. Turnbull. Group Sequential Methods with
Applications to Clinical Trials. Chapman and Hall/CRC, Boca Raton, FL,
2000.

149

https://www.federalregister.gov/d/E8-30086

150 References

Kyungmann Kim and David L Demets. Design and analysis of group sequen-
tial tests based on type I error spending rate functions. Biometrika, 74(1):
149–154, 1987.

John M. Lachin and Mary A. Foulkes. Evaluation of sample size and power
for analyses of survival with allowance for nonuniform patient entry, losses
to follow-up, noncompliance, and stratification. Biometrics, 42(3):507–519,
1986.

K K Gordon Lan and David L DeMets. Discrete sequential boundaries for
clinical trials. Biometrika, 70(3):659–663, 1983.

Qing Liu and George YH Chi. On sample size and inference for two-stage
adaptive designs. Biometrics, 57(1):172–177, 2001.

Richard W Madsen and Kenneth B Fairbanks. 𝑝 values for multistage and
sequential tests. Technometrics, 25(3):285–293, 1983.

Ollie Miettinen and Markku Nurminen. Comparative analysis of two rates.
Statistics in Medicine, 4(2):213–226, 1985.

Hans-Helge Müller and Helmut Schäfer. Adaptive group sequential designs
for clinical trials: combining the advantages of adaptive and of classical
group sequential approaches. Biometrics, 57(3):886–891, 2001.

Peter C O’Brien and Thomas R Fleming. A multiple testing procedure for
clinical trials. Biometrika, 35(3):549–556, 1979.

Sandro Pampallona and Anastasios A Tsiatis. Group sequential trials for one-
sided and two-sided hypothesis testing with provision for early stopping in
favor of the null hypothesis. Journal of Statistical Planning and Inference,
42(1-2):19–35, 1994.

Stuart J. Pocock. Group sequential methods in the design and analysis of
clinical trials. Biometrika, 64(2):191–199, 1977.

Michael A Proschan and Sally A Hunsberger. Designed extension of studies
based on conditional power. Biometrics, 51(4):1315–1324, 1995.

Michael A. Proschan, K K Gordon Lan, and Janet Turk Wittes. Statistical
Monitoring of Clinical Trials. A Unified Approach. Springer, New York,
NY, 2006.

Daniel O Scharfstein, Anastasios A Tsiatis, and James M Robins. Semipara-
metric efficiency and its implication on the design and analysis of group-
sequential studies. Journal of the American Statistical Association, 92(440):
1342–1350, 1997.

Thomas Sellke and David Siegmund. Sequential analysis of the proportional
hazards model. Biometrika, 70(2):315–326, 1983.

References 151

Eric Slud and LJ Wei. Two-sample repeated significance tests based on the
modified Wilcoxon statistic. Journal of the American Statistical Associa-
tion, 77(380):862–868, 1982.

The CAPTURE Investigators. Randomised placebo-controlled trial of abcix-
imab before and during coronary intervention in refractory unstable angina:
the CAPTURE study. The Lancet, 349(9063):1429–1435, 1997.

The GUSTO V Investigators. Reperfusion therapy for acute myocardial
infarction with fibrinolytic therapy or combination reduced fibrinolytic
therapy and platelet glycoprotein IIb/IIIa inhibition: the GUSTO V ran-
domised trial. The Lancet, 357(9272):1905–1914, 2001.

Anastasios A Tsiatis. Repeated significance testing for a general class of statis-
tics use in censored survival analysis. Journal of the American Statistical
Association, 77(380):855–861, 1982.

Samuel K Wang and Anastasios A Tsiatis. Approximately optimal one-
parameter boundaries for group sequential trials. Biometrics, 43(1):193–
199, 1987.

	Welcome
	Preface
	Version history

	Introduction
	Overview
	Quick start: installation and online help
	Package testing
	The primary routines in the gsDesign package
	The CAPTURE trial: binary endpoint example
	A time-to-event endpoint in a cancer trial
	A non-inferiority study for a new drug
	A diabetes outcomes trial example

	Group sequential design theory and notation in brief
	Distributional assumptions
	Hypotheses and testing
	Boundary crossing probabilities: gsProbability()
	One-sided testing
	Two-sided testing

	Expected sample size

	Continuous and integer sample size
	Applying the default group sequential design
	Default parameters
	Sample size ratio for a group sequential design compared to a fixed design.
	The default call to gsDesign()
	Applying the default design to the CAPTURE example
	Simulation of a binomial design
	Applying the default design to the noninferiority example

	Applying the default design to the cancer trial example
	Further properties of designs

	Time-to-event sample size derivation
	Deriving group sequential designs
	Boundary derivation using boundary crossing probabilities
	Types of error probabilities used: test.type
	Specifying boundary crossing probabilities in gsDesign()

	Deriving group sequential designs using boundary families

	Other gsDesign() parameters
	Setting Type I error and power
	Number and timing of analyses
	Standardized treatment effect: delta
	Normally distributed data
	Time to event data

	Spending functions
	Spending function definitions
	Spending function families
	Spending function basics
	Resetting timing of analyses
	Advanced spending function details
	Spending functions as arguments
	Investigational spending functions
	Optimized spending functions
	Writing code for a new spending function

	Analyzing group sequential trials
	The CAPTURE data
	Testing significance of the CAPTURE data
	Adding an interim analysis to a design
	Stage-wise p-values
	Repeated confidence intervals
	Subdensity functions

	Conditional power and B-values
	Z-values, B-values and S-values
	Incremental formulation
	Simple conditional power and conditional error
	Simple conditional power for the CAPTURE trial

	Conditional power and conditional error
	Application to the CAPTURE trial

	Bayesian design properties
	Normal densities
	The posterior distribution for \theta
	Bayes credible intervals
	Predictive power
	Predictive distribution for the normal case
	Prediction intervals
	Probability of success
	Updating probability of success based on blinded results
	Calculating the value of a clinical trial design
	Optimization example: selecting a futility bound

	References

