gs_design_ahr.Rd
Group sequential design using average hazard ratio under non-proportional hazards
gs_design_ahr( enrollRates = tibble::tibble(Stratum = "All", duration = c(2, 2, 10), rate = c(3, 6, 9)), failRates = tibble::tibble(Stratum = "All", duration = c(3, 100), failRate = log(2)/c(9, 18), hr = c(0.9, 0.6), dropoutRate = rep(0.001, 2)), ratio = 1, alpha = 0.025, beta = 0.1, IF = NULL, analysisTimes = 36, binding = FALSE, upper = gs_b, upar = gsDesign(k = 3, test.type = 1, n.I = c(0.25, 0.75, 1), sfu = sfLDOF, sfupar = NULL)$upper$bound, lower = gs_b, lpar = c(qnorm(0.1), -Inf, -Inf), h1_spending = TRUE, test_upper = TRUE, test_lower = TRUE, r = 18, tol = 1e-06 )
enrollRates | enrollment rates |
---|---|
failRates | failure and dropout rates |
ratio | Experimental:Control randomization ratio (not yet implemented) |
alpha | One-sided Type I error |
beta | Type II error |
IF | Targeted information fraction at each analysis |
analysisTimes | Minimum time of analysis |
binding | indicator of whether futility bound is binding; default of FALSE is recommended |
upper | Function to compute upper bound |
upar | Parameter passed to |
lower | Function to compute lower bound |
lpar | Parameter passed to |
h1_spending | Indicator that lower bound to be set by spending under alternate hypothesis (input |
test_upper | indicator of which analyses should include an upper (efficacy) bound; single value of TRUE (default) indicates all analyses;
otherwise, a logical vector of the same length as |
test_lower | indicator of which analyses should include an lower bound; single value of TRUE (default) indicates all analyses;
single value FALSE indicated no lower bound; otherwise, a logical vector of the same length as |
r | Integer, at least 2; default of 18 recommended by Jennison and Turnbull |
tol | Tolerance parameter for boundary convergence (on Z-scale) |
a tibble
with columns Analysis, Bound, Z, Probability, theta, Time, AHR, Events
Need to be added
#>#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 13.2 #> 2 All 2 26.4 #> 3 All 10 39.7 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 1 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 36 476. 292. 1.96 0.9 0.683 0.381 71.7 73.0 #># Single analysis gs_design_ahr(analysisTimes = 40)#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 11.9 #> 2 All 2 23.8 #> 3 All 10 35.6 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 1 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 40 428. 280. 1.96 0.9 0.678 0.389 68.8 69.9 #>#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 14.0 #> 2 All 2 27.9 #> 3 All 10 41.9 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 6 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 12 419. 95.0 4.33 0.000454 0.811 0.210 23.4 23.8 #> 2 2 Upper 24 503. 229. 2.34 0.566 0.715 0.335 55.9 57.1 #> 3 3 Upper 36 503. 309. 2.01 0.900 0.683 0.381 75.8 77.1 #> 4 1 Lower 12 419. 95.0 -1.28 0.0108 0.811 0.210 23.4 23.8 #> 5 2 Lower 24 503. 229. -Inf 0.0108 0.715 0.335 55.9 57.1 #> 6 3 Lower 36 503. 309. -Inf 0.0108 0.683 0.381 75.8 77.1 #>#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 14.2 #> 2 All 2 28.4 #> 3 All 10 42.5 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 6 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 10.7 371. 78.3 4.33 0.000254 0.823 0.195 19.3 19.6 #> 2 2 Upper 24.4 511. 235. 2.34 0.585 0.714 0.337 57.4 58.7 #> 3 3 Upper 36 511. 313. 2.01 0.900 0.683 0.381 76.9 78.3 #> 4 1 Lower 10.7 371. 78.3 -1.28 0.0163 0.823 0.195 19.3 19.6 #> 5 2 Lower 24.4 511. 235. -Inf 0.0163 0.714 0.337 57.4 58.7 #> 6 3 Lower 36 511. 313. -Inf 0.0163 0.683 0.381 76.9 78.3 #># multiple analysis times & IF # driven by times gs_design_ahr(IF = c(.25,.75,1), analysisTimes = c(12,25,36))#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 14.0 #> 2 All 2 27.9 #> 3 All 10 41.9 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 6 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 12 419. 95.0 4.33 0.000454 0.811 0.210 23.4 23.8 #> 2 2 Upper 25 503. 236. 2.34 0.600 0.711 0.341 57.8 59.1 #> 3 3 Upper 36 503. 308. 2.01 0.900 0.683 0.381 75.8 77.1 #> 4 1 Lower 12 419. 95.0 -1.28 0.0108 0.811 0.210 23.4 23.8 #> 5 2 Lower 25 503. 236. -Inf 0.0108 0.711 0.341 57.8 59.1 #> 6 3 Lower 36 503. 308. -Inf 0.0108 0.683 0.381 75.8 77.1 #>#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 13.9 #> 2 All 2 27.8 #> 3 All 10 41.7 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 6 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 12.5 439. 102. 4.33 0.000576 0.806 0.216 25.2 25.6 #> 2 2 Upper 26.4 501. 246. 2.34 0.640 0.706 0.348 60.1 61.4 #> 3 3 Upper 36 501. 307. 2.01 0.900 0.683 0.381 75.4 76.8 #> 4 1 Lower 12.5 439. 102. -1.28 0.00904 0.806 0.216 25.2 25.6 #> 5 2 Lower 26.4 501. 246. -Inf 0.00904 0.706 0.348 60.1 61.4 #> 6 3 Lower 36 501. 307. -Inf 0.00904 0.683 0.381 75.4 76.8 #># 2-sided symmetric design with O'Brien-Fleming spending gs_design_ahr(analysisTimes = c(12, 24, 36), binding = TRUE, upper = gs_spending_bound, upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL, theta=0), lower = gs_spending_bound, lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL, theta=0), h1_spending = FALSE)#> $enrollRates #> # A tibble: 3 x 3 #> Stratum duration rate #> <chr> <dbl> <dbl> #> 1 All 2 13.8 #> 2 All 2 27.5 #> 3 All 10 41.3 #> #> $failRates #> # A tibble: 2 x 5 #> Stratum duration failRate hr dropoutRate #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 All 3 0.0770 0.9 0.001 #> 2 All 100 0.0385 0.6 0.001 #> #> $bounds #> # A tibble: 6 x 11 #> Analysis Bound Time N Events Z Probability AHR theta info info0 #> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 12 413. 93.5 3.87 0.00208 0.811 0.210 23.0 23.4 #> 2 2 Upper 24 495. 225. 2.36 0.551 0.715 0.335 55.0 56.2 #> 3 3 Upper 36 495. 304. 2.01 0.900 0.683 0.381 74.6 75.9 #> 4 1 Lower 12 413. 93.5 -3.87 0.000000531 0.811 0.210 23.0 23.4 #> 5 2 Lower 24 495. 225. -2.36 0.00000116 0.715 0.335 55.0 56.2 #> 6 3 Lower 36 495. 304. -2.01 0.00000119 0.683 0.381 74.6 75.9 #>