Group sequential design power under non-proportional hazards

gs_power_nph(
  enrollRates = tibble::tibble(Stratum = "All", duration = c(2, 2, 10), rate = c(3, 6,
    9)),
  failRates = tibble::tibble(Stratum = "All", duration = c(3, 100), failRate =
    log(2)/c(9, 18), hr = c(0.9, 0.6), dropoutRate = rep(0.001, 2)),
  ratio = 1,
  events = c(30, 40, 50),
  analysisTimes = NULL,
  maxEvents = 45,
  upper = gs_b,
  upar = gsDesign(k = length(events), test.type = 1, n.I = events, maxn.IPlan =
    maxEvents, sfu = sfLDOF, sfupar = NULL)$upper$bound,
  lower = gs_b,
  lpar = c(qnorm(0.1), rep(-Inf, 2)),
  r = 18
)

Arguments

enrollRates

enrollment rates

failRates

failure and dropout rates

ratio

Experimental:Control randomization ratio (not yet implemented)

events

Targeted events at each analysis

analysisTimes

Not yet implemented

maxEvents

Final planned events

upper

Function to compute upper bound

upar

Parameter passed to upper()

lower

Function to compute lower bound

lpar

Parameter passed to lower()

r

Control for grid size; normally leave at default of r=18

Value

a tibble with columns Analysis, Bound, Z, Probability, theta, Time, avehr, Events

Details

Need to be added

Examples

library(gsDesign) library(gsDesign2) gs_power_nph() %>% filter(abs(Z) < Inf)
#> # A tibble: 4 x 10 #> Analysis Bound Z Probability Time Events AHR theta info info0 #> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 Upper 2.51 0.0316 14.9 30.0 0.787 0.240 7.37 7.50 #> 2 2 Upper 2.15 0.113 19.2 40.0 0.744 0.295 9.79 10.0 #> 3 3 Upper 2.12 0.192 24.5 50.0 0.713 0.339 12.2 12.5 #> 4 1 Lower -1.28 0.0266 14.9 30.0 0.787 0.240 7.37 7.50