Skip to contents

Subsets the data to all subjects randomized by the specified date, and prepares the data for analysis. This is a wrapper for cut_data_by_date() typically used with a date determined by cut_date_for_completers().

Usage

cut_completers(data, cut_date, event_gap = 0)

Arguments

data

Data generated by nb_sim().

cut_date

Calendar time (relative to trial start) at which to cut the data.

event_gap

Gap duration after each event during which no new events are counted. Can be a numeric value (default 0) or a function returning a numeric value. The time at risk is reduced by the sum of these gaps (truncated by the cut date).

Value

A data frame with one row per subject randomized prior to cut_date. Contains the truncated follow-up time (tte) and total number of observed events (events).

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(
  treatment = c("Control", "Experimental"),
  rate = c(0.1, 0.05), duration = c(100, 100)
)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 20)
# Find date when 5 subjects have completed
date_5 <- cut_date_for_completers(sim, 5)
# Get analysis dataset for this cut date (includes partial follow-up)
cut_completers(sim, date_5)
#>    id    treatment  enroll_time       tte tte_total events
#> 1   1 Experimental 0.0004944642 2.0000000 2.0000000      3
#> 2   2      Control 0.0208005081 2.0000000 2.0000000      1
#> 3   3      Control 0.0479350942 1.0330351 1.0330351      0
#> 4   4 Experimental 0.0885945325 2.0000000 2.0000000      0
#> 5   5      Control 0.1158299419 2.0000000 2.0000000      0
#> 6   6 Experimental 0.1595387931 0.3060113 0.3060113      0
#> 7   7      Control 0.1855378021 0.2358263 0.2358263      0
#> 8   8 Experimental 0.1897240110 2.0000000 2.0000000      3
#> 9   9      Control 0.2304312657 1.7227390 1.7227390      0
#> 10 10 Experimental 0.2311741791 1.9585498 1.9585498      0
#> 11 11 Experimental 0.2393335074 1.9503905 1.9503905      2
#> 12 12      Control 0.2471900075 1.9425340 1.9425340      2
#> 13 13      Control 0.3226500895 1.8670739 1.8670739      0
#> 14 14 Experimental 0.3312514995 1.8584725 1.8584725      0
#> 15 15      Control 0.3338556934 1.8558683 1.8558683      1
#> 16 16 Experimental 0.3413624816 1.8483615 1.8483615      2
#> 17 17 Experimental 0.3571896911 1.8325343 1.8325343      0
#> 18 18 Experimental 0.3684261413 1.8212979 1.8212979      1
#> 19 19      Control 0.3740461607 0.5336077 0.5336077      0
#> 20 20      Control 0.3939235397 1.7958005 1.7958005      0