
Package index
Group Sequential Computation
For an overview of the gsDesign package, see vignette("gsDesignPackageOverview").
-
gsDesign()xtable(<gsDesign>) - Design Derivation
-
plot(<gsDesign>)plot(<gsProbability>) - Plots for group sequential designs
-
gsProbability()print(<gsProbability>) - Boundary Crossing Probabilities
-
gsBound()gsBound1() - Boundary derivation - low level
-
sequentialPValue() - Sequential p-value computation
-
summary(<gsDesign>)print(<gsDesign>)gsBoundSummary()xprint()print(<gsBoundSummary>)gsBValue()gsDelta()gsRR()gsHR()gsCPz() - Bound Summary and Z-transformations
-
xtable - xtable
-
nNormal() - Normal distribution sample size (2-sample)
-
ciBinomial()nBinomial()simBinomial()testBinomial()varBinomial() - Testing, Confidence Intervals, Sample Size and Power for Comparing Two Binomial Rates
-
summary(<gsDesign>)print(<gsDesign>)gsBoundSummary()xprint()print(<gsBoundSummary>)gsBValue()gsDelta()gsRR()gsHR()gsCPz() - Bound Summary and Z-transformations
-
binomialPowerTable() - Power Table for Binomial Tests
-
print(<nSurvival>)nSurvival()nEvents()zn2hr()hrn2z()hrz2n() - Time-to-event sample size calculation (Lachin-Foulkes)
-
print(<nSurv>)nSurv()tEventsIA()nEventsIA()gsSurv()print(<gsSurv>)xtable(<gsSurv>) - Advanced time-to-event sample size calculation
-
gsSurvCalendar() - Time-to-event endpoint design with calendar timing of analyses
-
summary(<gsDesign>)print(<gsDesign>)gsBoundSummary()xprint()print(<gsBoundSummary>)gsBValue()gsDelta()gsRR()gsHR()gsCPz() - Bound Summary and Z-transformations
-
eEvents()print(<eEvents>) - Expected number of events for a time-to-event study
-
toInteger() - Translate group sequential design to integer events (survival designs) or sample size (other designs)
-
toBinomialExact() - Translate survival design bounds to exact binomial bounds
Spending Functions
For an overview of spending functions, see vignette("SpendingFunctionOverview").
-
summary(<spendfn>)spendingFunction() - Spending Function
-
sfLDOF()sfLDPocock() - Lan-DeMets Spending function overview
-
sfHSD() - Hwang-Shih-DeCani Spending Function
-
sfPower() - Kim-DeMets (power) Spending Function
-
sfExponential() - Exponential Spending Function
-
sfLogistic()sfBetaDist()sfCauchy()sfExtremeValue()sfExtremeValue2()sfNormal() - Two-parameter Spending Function Families
-
sfTDist() - t-distribution Spending Function
-
sfLinear()sfStep() - Piecewise Linear and Step Function Spending Functions
-
sfPoints() - Pointwise Spending Function
-
sfTruncated()sfTrimmed()sfGapped() - Truncated, trimmed and gapped spending functions
-
gsCP()gsPP()gsPI()gsPosterior()gsPOS()gsCPOS() - Conditional and Predictive Power, Overall and Conditional Probability of Success
-
summary(<gsDesign>)print(<gsDesign>)gsBoundSummary()xprint()print(<gsBoundSummary>)gsBValue()gsDelta()gsRR()gsHR()gsCPz() - Bound Summary and Z-transformations
-
gsBoundCP() - Conditional Power at Interim Boundaries
-
normalGrid() - Normal Density Grid
-
gsDensity() - Group sequential design interim density function
-
condPower()ssrCP()plot(<ssrCP>)z2NC()z2Z()z2Fisher()Power.ssrCP() - Sample size re-estimation based on conditional power
-
gsBinomialExact()binomialSPRT()plot(<gsBinomialExact>)plot(<binomialSPRT>)nBinomial1Sample() - One-Sample Binomial Routines
-
checkLengths()checkRange()checkScalar()checkVector()isInteger() - Utility functions to verify variable properties
-
as_table() - Create a summary table
-
as_gt() - Convert a summary table object to a gt object
-
as_rtf() - Save a summary table object as an RTF file