Package index
Group Sequential Computation
For an overview of the gsDesign package, see vignette("gsDesignPackageOverview")
.
-
gsDesign()
xtable(<gsDesign>)
- Design Derivation
-
plot(<gsDesign>)
plot(<gsProbability>)
- Plots for group sequential designs
-
gsProbability()
print(<gsProbability>)
- Boundary Crossing Probabilities
-
gsBound()
gsBound1()
- Boundary derivation - low level
-
sequentialPValue()
- Sequential p-value computation
-
summary(<gsDesign>)
print(<gsDesign>)
gsBoundSummary()
xprint()
print(<gsBoundSummary>)
gsBValue()
gsDelta()
gsRR()
gsHR()
gsCPz()
- Bound Summary and Z-transformations
-
xtable
- xtable
-
nNormal()
- Normal distribution sample size (2-sample)
-
ciBinomial()
nBinomial()
simBinomial()
testBinomial()
varBinomial()
- Testing, Confidence Intervals, Sample Size and Power for Comparing Two Binomial Rates
-
summary(<gsDesign>)
print(<gsDesign>)
gsBoundSummary()
xprint()
print(<gsBoundSummary>)
gsBValue()
gsDelta()
gsRR()
gsHR()
gsCPz()
- Bound Summary and Z-transformations
-
print(<nSurvival>)
nSurvival()
nEvents()
zn2hr()
hrn2z()
hrz2n()
- Time-to-event sample size calculation (Lachin-Foulkes)
-
print(<nSurv>)
nSurv()
tEventsIA()
nEventsIA()
gsSurv()
print(<gsSurv>)
xtable(<gsSurv>)
- Advanced time-to-event sample size calculation
-
gsSurvCalendar()
- Time-to-event endpoint design with calendar timing of analyses
-
summary(<gsDesign>)
print(<gsDesign>)
gsBoundSummary()
xprint()
print(<gsBoundSummary>)
gsBValue()
gsDelta()
gsRR()
gsHR()
gsCPz()
- Bound Summary and Z-transformations
-
eEvents()
print(<eEvents>)
- Expected number of events for a time-to-event study
-
toInteger()
- Translate group sequential design to integer events (survival designs) or sample size (other designs)
-
toBinomialExact()
- Translate survival design bounds to exact binomial bounds
Spending Functions
For an overview of spending functions, see vignette("SpendingFunctionOverview")
.
-
summary(<spendfn>)
spendingFunction()
- Spending Function
-
sfLDOF()
sfLDPocock()
- Lan-DeMets Spending function overview
-
sfHSD()
- Hwang-Shih-DeCani Spending Function
-
sfPower()
- Kim-DeMets (power) Spending Function
-
sfExponential()
- Exponential Spending Function
-
sfLogistic()
sfBetaDist()
sfCauchy()
sfExtremeValue()
sfExtremeValue2()
sfNormal()
- Two-parameter Spending Function Families
-
sfTDist()
- t-distribution Spending Function
-
sfLinear()
sfStep()
- Piecewise Linear and Step Function Spending Functions
-
sfPoints()
- Pointwise Spending Function
-
sfTruncated()
sfTrimmed()
sfGapped()
- Truncated, trimmed and gapped spending functions
-
gsCP()
gsPP()
gsPI()
gsPosterior()
gsPOS()
gsCPOS()
- Conditional and Predictive Power, Overall and Conditional Probability of Success
-
summary(<gsDesign>)
print(<gsDesign>)
gsBoundSummary()
xprint()
print(<gsBoundSummary>)
gsBValue()
gsDelta()
gsRR()
gsHR()
gsCPz()
- Bound Summary and Z-transformations
-
gsBoundCP()
- Conditional Power at Interim Boundaries
-
normalGrid()
- Normal Density Grid
-
gsDensity()
- Group sequential design interim density function
-
condPower()
ssrCP()
plot(<ssrCP>)
z2NC()
z2Z()
z2Fisher()
Power.ssrCP()
- Sample size re-estimation based on conditional power
-
gsBinomialExact()
binomialSPRT()
plot(<gsBinomialExact>)
plot(<binomialSPRT>)
nBinomial1Sample()
- One-Sample Binomial Routines
-
checkLengths()
checkRange()
checkScalar()
checkVector()
isInteger()
- Utility functions to verify variable properties
-
hGraph()
- Create multiplicity graphs using ggplot2
-
as_table()
- Create a summary table
-
as_gt()
- Convert a summary table object to a gt object
-
as_rtf()
- Save a summary table object as an RTF file